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Preface

I know what you are asking yourself—‘there are a lot of books available
about DSP, is this book the one for me?’ Well that depends on who you
are. If

e you are interested in doing research and development in one of the
many state-of-the-art applications of DSP, such as speech compression,
speech recognition, or modem design,

e your main proficiency is in computer science, abstract mathematics,
or science rather than electronics or electrical engineering,

e your mathematical background is relatively strong (flip back now to
the appendix—you should be comfortable with about half of what you
see there),

then you are definitely in the target group of this book. If in addition

e you don’t mind a challenge and maybe even enjoy tackling brain-
teasers,

e you're looking for one comprehensive text in all aspects of DSP (even
if you don’t intend reading all of it now) and don’t want to have to
study several different books with inconsistent notations, in order to
become competent in the subject,

e you enjoy and learn more from texts with a light style (such as have
become common for computer science texts) rather than formal, dry

tomes that introduce principles and thereafter endlessly derive corol-
laries thereof,

then this is probably the book you have been waiting for.
This book is the direct result of a chain of events, the first link of which
took place in mid-1995. I had been working at a high-tech company in Tel

XV
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Aviv that was a subsidiary of a New York company. In Tel Aviv it was rela-
tively easy to locate and hire people knowledgeable in all aspects of DSP, in-
cluding speech processing, digital communications, biomedical applications,

and digital signal processor programming. Then, in 1995, I relocated to a

different subsidiary of the same company, located on Long Island, New York.
One of my first priorities was to locate and hire competent DSP software
personnel, for work on speech and modem signal processing.

A year-long search turned up next to no-one. Assignment agencies were
uncertain as to what DSP was, advertisements in major New York area
newspapers brought irrelevant responses (digital design engineers, database
programmers), and, for some inexplicable reason, attempts to persuade more
appropriate people from Silicon Valley to leave the California climate, for
one of the worst winters New York has ever seen, failed.

T+ cdriticoler vio ag vrathan A~ 31 Lot bl s sxraa 1A Alganas n T
10 SUFuUcCK ITi€ as ratier oaa bl.ld;l: l/l.lClC wad 110 UJUIBCZIIUUD JJOI.- pupulauuu

to speak of, in an area noted for its multitude of universities and diversity
of high-tech industries. I soon found out that DSP was not taught at under-
graduate level at the local universities, and that even graduate-level courses
were not universally available. Courses that were offered were Electrical En-
gineering courses, with Computer Science students never learning about the
subject at all. Since I was searching for people with algorithm development
and coding experience, preferably strong enough in software engineering to
be able to work on large, complex software systems, CS graduates seemed to
be more appropriate than EEs. The ideal candidate would be knowledgeable
in DSP and would in the target group mentioned above.

Soon after my move to New York I had started teaching graduate level
courses, in Artificial Intelligence and Neural Networks, at the Computer
and Informations Sciences department of Polytechnic University. I inquired
of the department head as to why a DSP course was not offered to Computer
Science undergraduates (it was being offered as an elective to Electrical En-
gineering graduate students). He replied that the main reason was lack of
a suitable teacher, a deficiency that could be easily remedied by my volun-
teering,.

I thus found myself ‘volunteered’ to teach a new Computer Science un-
dergraduate elective course in DSP. My first task was to decide on course
goals and to flesh out a syllabus. It was clear to me that there would be lit-
tle overlap between the CS undergraduate course and the EE graduate-level
course. I tried to visualize the ideal candidate for the positions I needed to
fill at my company, and set the course objectives in order to train the perfect
candidate. The objectives were thus:
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¢ to give the student a basic understanding of the theory and practice
of DSP, at a level sufficient for reading journal articles and conference
papers,

e to cover the fundamental algorithms and structures used in DSP com-
putation, in order to enable the student to correctly design and effi-
ciently code DSP applications in a high-level language,

¢ to explain the principles of digital signal processors and the differences
between them and conventional CPUs, laying the framework for the
later in-depth study of assembly languages of specific processors,

o to review the background and special algorithms used in several impor-
tant areas of state-of-the-art DSP research and development, including
speech compression/recognition, and digital communications,

e to enable the student who completes the course to easily fit in and
contribute to a high-tech R&D team.

Objectives defined, the next task was to choose a textbook for the course.
I perused web sites, visited libraries, spoke with publisher representatives at
conferences, and ordered new books. I discovered that the extant DSP texts
fall into three, almost mutually exclusive, categories.

About 75% of the available texts target the EE student. These books
assume familiarity with advanced calculus (including complex variables and
ordinary differential equations), linear system theory, and perhaps even
stochastic processes. The major part of such a text deals with semirigor-
ous proofs of theorems, and the flavor and terminology of these texts would
certainly completely alienate most of my target group. The CS student, for
example, has a good basic understanding of derivatives and integrals, knows
a little linear algebra and probably a bit of probability, but has little need
for long, involved proofs, is singularly uninterested in poles in the complex
plane, and is apt to view too many integral signs as just so many snakes,
and flee in terror from them.

In addition, these type-one texts ignore those very aspects of the subject
that most interest our target students, namely algorithm design, compu-
tational efficiency and special computational architectures, and advanced
applications. The MAC instruction and Harvard architecture, arguably the
defining features of digital signal processors, are generally not even men-
tioned in passing. Generally only the FFT, and perhaps the Levinson-Durbin
recursion, are presented as algorithms, and even here the terminology is of-
ten alien to the CS student’s ear, with no attention paid to their relation
with other problems well known to the computer scientist. The exercises



xviii PREFACE

generally involve extending proofs or dealing with simplistic signals that
can be handled analytically; computer assignments are rare.
Finally, due perhaps to the depth of their coverage, the type-one texts

tend to cover only the most basic theory, and no applications. In other words,
these hoaks finish hefare oettine ta the reallyv interectine tanice Same raver

consider speech compression and modem design beyond their scope. More
advanced or specific texts are thus absolutely necessary before real-world
applications can be tackled. These texts thus do not achieve our goal of
preparing the student for participation in a real R&D team.

The next category, counting for about 20% of the texts, do target people
who are more at home with the computer. Type-two texts tend to be ‘recipe
books’, often accompanied by a diskette or CD. The newer trend is to replace
the book with interactive instruction and experimentation software. These
books usually contain between fifty and one hundred black box routines that
can be called from a high-level language (e.g. C or MATLAB). The bulk of
the text consists of instructions for calling these routines, with discussion of
the underlying theory kept to a minimum.

While very useful for the computer professional who on odd occasions
has need for some DSP procedures, these books do not instill a deep unified
comprehension of the subject. Admittedly these books often explain algo-
rithms in greater depth than type-one texts, but our target readers would
benefit even more from a combination of type-one depth with type-two em-
phasis.

Of course there is nothing wrong with obtaining a well tested program
or routine that fulfills the purpose at hand. Indeed it would not be prudent
for the implementor to reinvent wheels in places where tire shops abound.
However, due to their generality, library routines are often inefficient and
may even be impractical for specific purposes. I wanted to enable my stu-
dents to meet specific DSP needs by evaluating existing programs and library
routines, or by writing original, tailored DSP code as required. The reader
should also be able to port libraries to a new platform, understanding both
the algorithm and the platform idiosyncrasies.

Finally, there are type-three texts, often written by DSP processor man-
ufacturers. They emphasize the architecture, programming language, and
programming tools of the manufacturer’s line of digital signal processors,
and while they may explain some theory, they mostly assume prior knowl-
edge or claim that such knowledge is not really required for the comprehen-
sion of the subject matter. The programming techniques developed, usually
in lengthy detail, may be applicable to some extent to other manufacturers’
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processors, but considerable adaptation would normally be required. Type-
three texts tend to stress FIR and IIR filter structures, the radix 2 FFT
algorithms, the LMS and perhaps Viterbi algorithms, and often describe
various practical applications of these in great depth.

Due to their lack of mathematical sophistication, these books do not
attempt to seriously treat DSP theory. Such critical topics as the sampling
theorem, filtering, and adaptive systems are only trivially covered; true ex-
planation of noise, filtering, and Fourier transforms are replaced by historical
accounts, and algorithms are displayed in pseudocode fait accompli rather
than derived. On the other hand, the manufacturers apparently feel that the
typical reader will be lacking in CS background, and thus overly stress such
obvious features as loops and numeric representation.

I thus reached the conclusion that none of the available DSP texts was
truly suitable for the course, and was compelled to create my own course ma-
terials. These became the corner-stone of the present book. Often I found
myself rethinking my own understanding of the subject matter, and fre-
quently connections with other computer science subjects would only be-
come clear during lecture preparation, or even during the lecture itself. I
also found that the elimination of the conventional mathematical apparatus
and rigorous proofs not only did not deplete the subject matter of meaning,
but actually enriched it.

The topics included in this text may, at first, surprise the reader who is
used to more conventional DSP texts. Subjects such as the matched filters,
adaptive algorithms, the CORDIC algorithm, the Viterbi algorithm, speech
compression, and modern modem theory are normally considered too com-
plex and specialized for presentation at this level. I have found that these
advanced topics are no more difficult for the newcomer to grasp than filter
design or limit cycles, and perhaps more interesting and relevant. However,
in order to keep the book size moderate, some of the more classical subjects
had to be curtailed. These subjects are adequately covered in traditional
texts, which may be consulted to supplement the present one.

Even so, the present book contains more material than can be actually
taught in a single-semester course. A first course in DSP could cover most
of the material in the early chapters, with the instructor then selecting
algorithms and applications according to personal preference. The remaining
subjects may be relegated to a more advanced course, or be assigned as self-
study topics. My initial course went through the basic theory at break-neck
speed, in order to rapidly get to speech compression and recognition. A
second attempt emphasized modems and DSP for data communications.
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Every section ends with a number of exercises that are designed to be en-
tertaining and enriching. Some of these should not be difficult for the reader
who understands the section, being designed to reinforce basic understand-
lllg OI Llle IIlatefldl lVJ.&Lly are SOHIeWIld‘L uldueugmg, (,ompleulenmng l}Ile
text, extending the theory, or presenting actual applications of the subject
studied. Some are only loosely defined; for these one can give a quick an-
swer, or develop them into a term project. Others introduce new material
that will ease the understanding of the following sections, as well as widening
the reader’s DSP horizons.

I purposely avoid taking sides on the divisive issue of programming lan-
guage and environment for algorithm design and test on general-purpose
computers. Realizing that C, MATLAB, SPW, Mathematica and the like
will all have their staunch supporters, and all have their strengths and
weaknesses, I leave it to the student or instructor to select that language
with which they are the most comfortable. Every seasoned programmer is
most effective in his or her native language, and although some languages
are obviously better DSP ‘environments’ than others, the difference can be
minimized by the use of appropriate libraries.

Although the book was written to serve as a course textbook, it may be
used by non-students as well. DSP practitioners are like master craftsmen;

h thov are callad 11n 3 m 3 3
when they are called upon to construct some object they must exploit their

box of tools. Novices have only a few such tools, and even these may not
be sufficiently sharp. With time more tools are acquired, but almost all
craftsmen tend to continue using those tools with which they have the most
experience The purpose of this book is to fill the toolbox with tools, and to
help the DSP professional become more proficient in their proper use. Even
people working in the field several years will probably find here new tools
and new ways of using tools already acquired.

I would like to thank my students, who had to suffer through courses
with no textbook and with continually changing syllabus, for their com-
ments; my colleagues, particularly Yair Karelic, Mauro Caputi, and Tony
Grgas, for their conscientious proofreading and insights; my wife Ethel for
her encouragement (even allowing me untold late-night sessions banging
away at the keyboard, although she had long ago banished all computers
from the house); and our two girls, Hanna and Noga, who (now that this
book is complete) will have their father back.

Jonathan (Y) Stein
Jerusalem, Israel
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Introductions

The reader is already an expert in signal processing, although possibly un-
aware of it. We are all remarkably complex signal processing systems, adap-
tively processing intricate audio and video signals every moment of our lives.
While awake we input intricate signals from our environment, extract high-
level representations of information carried by these signals, make decisions
based on this information, record some of the information for later recall
and processing, and produce new signals to change our environment in real
time. Even while sleeping, although most of the input has been removed, we
unconsciously continue the processing off-line; we reintroduce recently in-
put signals in order to correlate them with previously stored signals, decide
which signals should be stored for long periods of time, and generally per-
fect our signal processing performance. Due to this signal processing we are
extremely good at understanding speech and immediately reacting based on
what has been said. We scarcely think about our ability to recognize faces
and greet (or avoid) their owners. We take our proficiency at reading hand-
writing for granted, except when admiring the pharmacist’s even greater
competency when presented with a physician’s scrawl.

It is therefore extremely frustrating to discover how difficult it is to design
artificial devices that can perform as well. After decades of research, devices
that can understand unconstrained human speech are still extremely primi-
tive, and even speech synthesis is still to be considered a nontrivial problem.
Machine recognition of human faces is possible only in severely restricted
environments, and even our limited capabilities are not yet commonplace
due to being prohibitively expensive. While optical character recognition of
high quality printed fonts has been perfected, acceptable machine reading
of handwriting has yet to be attained.

These three examples—speech understanding, face recognition, and read-
ing of handwriting—are typical of a long list of tasks which we find almost
trivial, but which have turned out to be extremely difficult for machines.
It is only due to our meager attempts at designing machines to perform
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these functions that we have come to grasp their extreme complexity. Due
to this inherent complexity, researchers and implementors attempting to
mechanize these functions have turned to the strongest and most intelligent
devices available. The most sophisticated and capable invention humankind
has devised to date is the digital computer. For this reason it is natural
that much of the state-of-the-art signal processing is performed digitally. In
this, the first chapter, we introduce signal processing, and more specifically
Digital Signal Processing, which from now on we shall call DSP.

In order to acquaint the reader with the concept of using digital technol-
ogy in order to process signals, we will first trace the early history of signal
processing. We then jump ahead to a survey of state-of-the-art applications,
in order to convince the reader that the problem is still alive and interesting.
Next we introduce the concept of signal processing by demonstrating analog
signal processing on a simple example. Finally we present the basic ideas
behind the use of computers in signal processing.

1.1 Prehistory of DSP

The first major accomplishments of humankind involved mastering the pro-
cessing of material objects, and indeed humankind is often defined as the
animal who fashions tools. Lower forms of animals do not, in general, change
naturally occurring objects in order to adapt them to their needs. When hu-
mankind discovered that one could take stones and bones and by relatively
simple processing convert them into arrows, knives, needles, fire-making im-
plements, and the like, the species transcended all those that had come be-
fore it. More and more complex processing algorithms were then developed.
For example, humans learned to till the soil, plant wheat seeds, water and
fertilize them, harvest the wheat, separate the chaff from the grain, ground
the grain into flour, mix the flour with water and yeast, and bake the dough
to make bread. This represents a highly developed culture of material object
processing.

The next stage in humankind’s development involved the processing of
signals. Signals, like materials, are real physical objects, but are intangible.
Humankind learned to adapt a mouth (originally developed for eating) and
an ear (designed for hearing predators approach) into a highly flexible acous-
tic communications system. The medium for this communications exchange
was pressure waves in air, and to some extent visual clues conveyed via
light. Primitive peoples also developed techniques for communications over
distances, such as tom-tom drums and smoke signals. Then came the de-
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velopment of the telegraph and telephone, which used the electrical signals,
and radio, which used electromagnetic waves. The objects being manipu-
lated remain physically existing quantities, although they became less and
less tangible.

The final stage (so far) in humankind’s development entailed learning
to process information. Unlike material objects and signals, information is
entirely abstract and cannot really be said to exist in the physical world.
Information is like ideas, and while it can be quantified it is not held back
by physical limitations. The seeds of information-processing were sown with
the invention of writing and arithmetic, philosophy and algebra, art and
logic, but were brought to full fruition with the invention of the digital
computer. The computer can transcend nature by predicting physical phe-
nomena before they occur, simulating worlds that cannot exist, and creating
new information where none was before.

The marriage of the last two developments in mankind’s history, i.e., uti-
lizing digital computation for the purpose of processing of signals in the real
world, is the objective of DSP. While perhaps not a major milestone in the
history of humankind, DSP is a significant enough endeavor to warrant study

by all interested in manipulating their world using information-processing
techniques.

EXERCISES

1.1.1 Does Digital Signal Processing mean ‘the processing of digital signals’ or ‘the
digital processing of signals’?

1.1.2 What possible relationships might there be between DSP and the following
computer science fields?
1. Numerical Analysis
2. Compiler Design
3. Operating Systems
4. Database Programming
5. Artificial Intelligence

1.1.3 Listen to an extremely weak station on an AM radio. Can you understand
what is being said? Would you be able to understand were the language
spoken to be one in which you are not completely proficient? What happens
if there are interference and whistles? Other radio stations? Does the same
happen with an FM radio station? Repeat the above experiment with a
shortwave radio. Find stations using SSB modulation. What happens if you
do not tune the signal in properly? Sit in a cocktail party where many groups
of people are talking. Focus on one conversation after another. How well can
you separate out voices? What have you learned from this exercise?



4 INTRODUCTIONS

1.2 Some Applications of Signal Processing

So what exactly is signal processing and why do we want to do it? Sig-
nal processing is the discipline of detecting, manipulating, and extracting
information from physical quantities that vary in time (signals).

The only way to really understand what we mean by this definition is to
consider examples of signal processing applications.

Voice communications, processing, and store-and-forward. The
main means of communications between humans is speech. One human
broadcasts information as an acoustic signal that can be detected by other
humans. When the persons desiring to converse are not colocated, we must
provide a mechanism to transfer the signal from place to place. When they
are not available simultaneously, we need to record this acoustic signal for
later playback. Digital forwarding and recording of speech have certain ad-
vantages, as we shall discuss later. In order to use digital transfer and stor-
age we require a method for making a digital representation of the acoustic
signal, as well as algorithms for Automatic Gain Control (AGC), Voice
Activity Detection (VAD), and perhaps compressing the digital represen-
tation in order to preserve disk space or communications bandwidth. Ad-
ditional processing entails enhancing the quality of speech in noise, and
acceleration/deceleration of the playback speed without distortion. More
complex processing algorithms are required for separation of one voice from
others (cocktail-party effect), machine-synthesized speech (text to speech),
speech recognition and speaker identification.

Music synthesis, recording, and playback. Much of what we said
about speech holds for ‘wider bandwidth’ acoustic signals, such as music.
Here the emphasis is on high-quality transfer (e.g., broadcast), compres-
sion (e.g., MPEG files), storage (e.g., compact disks), and noise reduction,
(for example, restoration of old recordings). However, there are also pro-
cesses specific to music such as accurate recreation of the original sound in
different acoustic environments (equalization), digital simulation of musi-
cal instruments (synthesizers, keyboard organs, MIDI), and special effects
(mixing, echo, reverberation).

Data communications on voice-grade channels. Another exten-
sion of voice processing is the adding of data bearing signals to channels
originally designed for voice use. Touch-tone dialing (technically known as
DTMF) has become almost universal for dialing and for menu selection.
Facsimile machines that transmit documents over public telephone circuitry
have also become commonplace, and high speed modems enable computers
to interconnect over this medium. It is also useful to convert the audio itself
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to digital form, for example, to enable several conversations to share one
telephone line, or for the purposes of secure communications (encryption).

Automobile Industry. A conventional muffler reduces noise by passing
exhaust gases through a series of baffles that reduce their velocity. Unfortu-
nately this same process requires the engine to waste energy forcing these
gases through the muffler, energy that would otherwise have been used to
increase horsepower and fuel efficiency. The electronic muffler uses active
noise cancellation instead; the noise is sensed by a microphone, and iden-
tical noise is added 180° out of phase. This same technique can be utilized
to add out-of-phase vibration to the mounts of the engine on the chassis.
Acoustic DSP can also be used to diagnose and control engine faults.

Industrial Applications. The measurement of vibrational modes and
the discovery of their underlying causes and mechanical structural problems
they may indicate is a well-known industrial application of signal processing.
Chemical process control relies heavily on instrumentation that employs ad-
vanced signal processing. Robots on assembly lines receive signals from sen-
sors and adaptively act upon them by moving their mechanical appendages.
Other applications include the diagnosis of electric motor faults from current
signatures, the rapid and precise measurement of fluid flow, the control of
welding and smelting apparatus, and pump wear monitoring.

Biomedical engineering. The human brain is a massively parallel com-
puter containing about 100 processing units called neurons. These neurons
fire electric impulses that are not externally observable, but by placing elec-
trodes at various positions on the scalp, voltages that represent sums of many
neurons are detectable. These recordings are known as electroencephalo-
grams (EEG) and after proper processing they can be used for diagnosis of
sleep disorders, epilepsy, and brain disease. The electric activity of the heart
can also be monitored, using the electrocardiogram (ECG). Processing this
signal aids the physician in diagnosing heart problems. Monitoring during
labor involves continual display of fetal heart rate as well as uterine muscular
activity. These signals require removal of hum introduced from the electric
power source and extensive real-time preprocessing.

Radar and sonar processing. The purpose of radar and sonar is to
locate bodies in space and optionally to determine their speeds. Well-known
radar applications include air traffic control, aircraft radar, smart-missiles,
weather satellite radar, and police speed traps. The distance determination
relies on the sensitive detection and accurate timing of return signals; elec-
tromagnetic signals for radar and acoustic signals in water for sonar. This
processing relies on matched filtering and high resolution spectral analysis.
Doppler radar speed measurement requires precise frequency measurement.
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Radar signals usually have very high bandwidths, and consequently require
very fast processing rates. Sonar bandwidths are much lower than those
of radar, but the processing power required is high due to the interference
being stronger, and the return signals being weaker and more distorted.
Multipath reception complicates the location effort and often arrays of sen-
sors are employed and beamforming used. Electronic intelligence (ELINT)
and electronic warfare (EW) exploit interception of radar signals in order to
detect/identify and to deceive/defeat the radar system, respectively.

Seismology. Seismic signal analysis is used by the oil and gas industries
in the exploration of subsurface hydrocarbon reserves; by government agen-
cies for nuclear detonation detection; and by long-term planning authorities
for investigation of subsurface geological formations and their significance
to architecture and urban development. Signals passively collected during
naturally occurring seismic events such as earthquakes and volcanic erup-
tions may aid in their detection, epicenter location, and prediction. During
active exploration such seismic disturbances must be initiated, for example,
by setting off high-energy charges (although environmental considerations
may mandate the use of lower energy sources such as acoustic speakers). The
seismic waves are scattered by interfaces between different geological strata,
and collected at the earth’s surface by an array of seismometers. Thus multi-
ple seismic signals must be digitized and processed to lead to source location
or mapping of the geological strata.

EXERCISES

1.2.1 What other areas utilize signal processing? List several applications not on
the above list. Research at a library or search the Internet.

1.2.2 What areas may potentially benefit from signal processing, but are not yet
using it? Write up a detailed description and submit to the patent office.

1.2.3 Consider a mobile robot able only to avoid obstacles, and to locate an electric
outlet when its batteries are low. What technologies would be needed to
implement such a robot? Where is DSP needed? Now give the robot the
ability to receive verbal commands, to retrieve objects, and to keep its owner
informed. What DSP is needed now?

1.2.4 Dual Tone Multi Frequency (DTMF) tones consists of two frequencies. The
same is true for dial tone and ring-back tone. What simple tunes can you play
recognizably using DTMF? Who answers the phone when you do? Why are
two different frequencies used—wouldn’t it be easier to use only one? (Hint:
Take the expense of incorrectly routed calls into account.)
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1.2.5 Using a computer with multimedia capabilities, record some naturally spoken
speech and observe its waveform graphically. Does this picture contain all the
information we can obtain from listening to the speech? You can easily find
long silences and tell the difference between whispering and screaming. Try to
tell where the words begin and end. Can you differentiate between male and

famala vaicas? Clan wa aaa what o hale o ond A caiiraieo R,

iemaase voices! Lan you guess winat is ucuxg said? naaumiug, you answered in
the affirmative to the first question, where exactly is the information?

1.2.6 You are given the job of saving the several megabytes of information from
an old computer, about to be discarded. The computer has no serial output
ports or modem, but does have an analog output that can produce 256 dif-
ferent voltage levels. What is the simplest encoding method for outputting
information? How can you decode and store the information (you can use
any readily available computer or peripheral)? How fast can you go? Do you
think it can be decoded this fast? What are the real limitations? What hap-
pens if background noise is recorded along with the signal? This is the basic
idea behind the download path of the so-called PCM modem that achieves
56 Kb/s over telephone lines.

1.2.7 Same problem but this time the computer has an internal speaker and can
generate tones of different frequencies (all of the same amplitude). You may
decide to convert the data to be saved, byte by byte, into one of 256 tones, and
to record the tones onto an audio cassette. Design a transmitter (modulator)
for this case (try writing a program). What do you need to decode this
information (demodulator)? How fast can you go? Perhaps you decide to
convert the data to be saved, bit by bit, into one of only two tones. What
do the modulator and demodulator look like now? This is the FSK modem,
capable of 300 b/s on phone lines.

1.3 Analog Signal Processing

Signal processing is the discipline of detecting, manipulating and extracting
information from physical quantities that vary in time. Now that we have
seen why we want to do it, we can begin to discuss how to do it. DSP
processes signals digitally, that is, by programming, rather than by building
analog electronic circuits. However, before we jump into digital processing,
a brief discussion of analog processing is in order.

It is clear that signals can be processed using analog circuits such as
amplifiers and filters. These devices take analog signals as inputs and re-
turn analog signals as outputs. Electronic engineers know how to design
these circuits to obtain specific processing characteristics (obtaining certain
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voltage levels, amplifying certain frequency ranges while eliminating others,
etc.). Quite complex systems can be designed, for example, receivers that
are sensitive only to very specific waveforms. In-depth explanation of the
techniques that have been developed in this field is beyond the scope of our
book, and for our purposes it is sufficient to analyze a simple example.

Assume that wish to input a sine wave of arbitrary frequency, offset and
amplitude (within bounds of course) and output a train of narrow pulses of
equal frequency. One can observe the input and desired output as ‘X’ and
‘Y’ in Figure 1.2. Why would one want to perform this operation? There
may be a number of reasons. For example, one may want to measure the
frequency of the sine wave using a digital counter that increments upon
receiving a narrow pulse. Or one may need the pulse as a synchronization
signal for some process that should be locked in time with the sine wave. It
could be that we need to generate a pulse for triggering an oscilloscope or
some other instrument.

X—"—é- LIMITER B

¢ DELAY j

—

Figure 1.1: Diagram of an analog sine to pulse converter.

One way of producing the desired effect is depicted in Figure 1.1, with
the input, intermediate signals, and output drawn in Figure 1.2. The first
step is to pass the signal (waveform X) through a capacitor that acts as a
DC blocker. This ensures that the signal values are centered around zero
voltage (waveform A). Next we put the signal through a hard limiter. This is
an amplifier driven to its maximum amplification, so that its output will be
+Vinaz for any positive input, and — V4, for any negative input (waveform
B). Next we split the signal so that it traverses two paths, one slightly de-
layed with respect to the other (this delay determines the width of the pulse
to be obtained). The delayed signal is now subtracted from the nondelayed
version, producing an output that is almost always zero (waveform C). The
subtraction is performed, once again, using an amplifier, this time a differ-
ential amplifier that has noninverting and inverting inputs. The amplifier’s
output is nonzero and positive at the leading edge of the square wave (since
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Figure 1.2: Analog signals from the sine to pulse converter.

there we have +Vijae — —Vimaez) and nonzero and negative one half-cycle
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s Tatter artifact ic eliminated by the tice of a halfoaname rertifor
This latter artifact is eliminated by the use of a half-wave rectifier,

a component that only passes positive voltages, suppressing negative ones.
The final result (waveform Y) is a narrow positive pulse locked to the leading
edge of the original sine, as required.

EXERCISES

1.3.1

1.3.2

1.3.3

The above example assumes the existence of a delay element, which may be
quite difficult to implement. For high-frequency signals, a long piece of cable
may be used, relying on the finite speed of propagation of the signal through
the cable to introduce the time delay. For low frequencies, even extremely
long lengths of cable introduce delays that are insignificant fractions of the
period. Assume you have an analog differentiator, a device whose output is
the derivative of its input. How would you use it in our sine to pulse converter?
What would the output pulse look like?

The device we described above is basically a zero crossing detector, a device
that determines when the signal goes through zero voltage. We can avoid the
need for a rectifier if we employ a peak picker, which outputs pulses at the
maxima of the input signal. How can a peak picker be implemented given a
differential amplifier and a reference voltage source?

How can an integrator (a device whose output is the integral of its input) be
used to solve our problem?
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1.3.4 Assume you have a digital representation of the input; that is, a sequence of
voltage measurements uniformly spaced in time. Write software routines for
the zero crossing detector and the peak picker, assuming that the sine wave
is sampled very densely (many equally-spaced samples per cycle). Will your
routines work if the sampling rate is much lower, for example, eight samples
per cycle? Four samples per cycle?

1.4 Digital Signal Processing

In the previous section we saw an example of how signals can be processed
using analog circuits. How can we similarly process analog signals digitally?
A very general scheme is depicted in Figure 1.3.

antialiasing]
&

filter A/Di—— DSP Processor (——D/A “"“°ﬁ’i§c';;“°n_,_~

Figure 1.3: Generic DSP scenario.

The purpose of the filters will only become clear later on (see Sec-
tion 2.10). The blocks marked A /D and D/ A represent devices that convert
Analog signals into Digital ones, and vice versa. These devices allow us to
translate signals in the physical world into sequences of numbers that com-
puters can accept as input and process, and to convert sequences of numbers
output by computers back into physical signals.

The heart of the system is the digital signal processor, which we shall
usually just call the DSP. (This double use of the acronym DSP should not
be confusing, with the differentiation between the processor and process-
ing being easily understood from context.) You may think of the DSP as
basically a computer that performs the needed computation. It may be a
general-purpose computer, such as a desktop workstation, readily available
and easily programmed. Or it may be special purpose digital hardware de-
signed specifically for the task at hand. Intermediate between these extremes
is a general-purpose programmable digital signal processor. These DSP chips
are similar to microprocessors, with arithmetic capabilities, memory access,
input and output ports, etc. However, as we shall discuss in Chapter 17,
they are augmented with special commands and architecture extensions in
order to make them particularly efficient for computations of the type most
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prevalent in DSP applications. While programming DSPs in high-level lan-
guages is becoming popular, their special architectures can be best exploited
by low-level (assembly) programming.

At this point you are probably asking yourself whether DSP is truly
superior to analog signal processing. Why should we replace a handful of
electronic components with two filters, an A/D and a D/A, and an expensive
and hard-to-program DSP? The main reasons to favor digital techniques over
analog ones, are:

e greater functionality,

e accuracy and reproducibility,

e modularity and flexibility,

e increased price/performance, and

e reduced time-to-market.

The greater functionality derives from the possibility of implementing
processes that would be extremely difficult and/or expensive to build in
analog circuitry. In particular, arbitrary time delays, noncausal response,
linear-phase (see Chapter 6), and adaptivity (see Chapter 10) are simple to
implement in DSP, while practically impossible in analog.

Accuracy and reproducibility are characteristics of digital numbers in
contrast to analog voltages. Precision is a function of the number of bits used
in computation, and digital numbers can be protected against inaccuracy
by error-correcting codes. A copy of a copy of a copy of a digital recording
is identical to the original, with no added noise and no ‘drift’ caused by
temperature or aging.

The modularity and flexibility are byproducts of programmability; DSP
code can readily be reused and modified. DSP code, like all software, can
be made generic and placed into libraries with little sacrifice. Last minute
changes are a hardware engineer’s worst nightmare, while field debugging is
commonplace in the software arena.

In recent years significant advances have been achieved in digital tech-
nology, including the development of smaller, faster, more power efficient
and less expensive digital processors. For these reasons digital technology
is finding its way into almost every facet of our lives. Once the process can
be performed digitally, it usually takes only a very short time until it is
profitable to do so.
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There are, admittedly, a few drawbacks associated with the use of DSP.
The most notable of these are:

e limited speed of general-purpose DSPs,

¢ finite word-length problems, compounding of round-off errors, and ‘sta-
bility’,  as well as

e the need for specialized algorithms and programming.

As aresult of the first problem many applications, for example, those dealing
with real-time processing of high bandwidth signals, cannot yet be handled
digitally. The second shortcoming is more a hindrance than a true impedi-
ment, compelling us to analyze our numeric algorithms more cautiously. The
third drawback is actually a favorable opportunity for students of DSP. It

ensures a steady demand for competent DSP personnel for many years to
come.

EXERCISES

1.4.1 ‘Some DSP practitioners rarely deal with DSP theory at all, rather are
experts at programming DSPs for control and general algorithmic applica-
tions, rather than as a DSP.’ The acronym DSP appears four times in this
sentence. Explain which of the various meanings (processing, block diagram
function, programmable processor) best matches each.

1.4.2 Figure 1.3 depicts a situation with exactly one input signal and one output
signal. Describe an application with no inputs and one analog output. Two

analog inputs and one output. One input and two outputs. Can there be
useful applications with no outputs?

1.4.3 An amplifier increases the magnitude of a signal, while an attenuator de-
creases the magnitude. An inverter inverts the polarity of a signal, while
a clipper limits the magnitude of a signal. A DC blocker shifts the average
to zero. What mathematical functions are performed by these components?
Code a routine for each.

1.4.4 What differences do you expect to find between DSPs and conventional
CPUs?

1.4.5 Are there functions that can be performed in analog electronics, but cannot
be performed in DSP?

1.4.6 Compare digital Compact Disc (CD) technology with the older Long Playing
(LP) records. Explain why CD technology has totally replaced LPs by con-
sidering sound quality, playing duration, noise, stereo separation, the effect
of aging media, and the ability to make copies.
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Signals

We are now ready to commence our study of signals and signal processing
systems, the former to be treated in Part I of this book and the latter in Part
II. Part III extends the knowledge thus gained by presentation of specific
algorithms and computational architectures, and Part IV applies all we will
have learned to communications and speech signal processing.

At times one wants to emphasize signals as basic entities, and to consider
systems as devices to manipulate them or to measure their parameters. The
resulting discipline may then be called signal analysis. At other times it is
more natural to consider systems as the more fundamental ingredients, with
signals merely inputs and outputs to such systems. The consequence of this
viewpoint is called signal processing. This term is also most commonly used
when it is not clear which aspect one wishes to stress.

In this chapter we introduce the concept of a signal. We will see that
there are analog signals and digital signals, and that under certain conditions
we can convert one type into the other. We will learn that signals can be
described in terms of either their time or frequency characteristics, and that
here too there are ways to transform one description into the other. We
present some of the simplest signals, and discover that arbitrary signals can
be represented in terms of simple ones. On the way we learn how to perform
arithmetic on signals, and about the connection between signals and vectors.

2.1 Signal Defined

The first question we must ask when approaching the subject of signal anal-
ysis is ‘What exactly do we mean by signal?’ The reader may understand
intuitively that a signal is some function of time that is derived from the
physical world. However, in scientific and technological disciplines it is cus-
tomary to provide formal mathematical definitions for the main concepts,
and it would be foolish to oppose this tradition. In order to answer the ques-
tion satisfactorily, we must differentiate between analog and digital signals.

15
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Definition: signal

An analog signal s is a finite real-valued function s(t) of a continuous variable
t (called time), defined for all times on the interval ~oo < t < +o00. A digital
signal s is a bounded discrete-valued sequence s, with a single index n (called
discrete time), defined for all times n = —co... + 0. ]

The requirement that analog signals be real-valued, rather than integer or
complex, has its origin in the notion that real-world signals, such as speeds,
voltages, and acoustic pressures, are simple continuous variables. Complex
numbers are usually considered purely mathematical inventions that can
never appear in nature. Digital signals are constrained more by the require-
ment of representability in a digital computer than by physical realizability.
What we mean here by ‘discrete’ is that the possible values are quantized to
discrete values, such as integers or all multiples of 2~%. ‘Bounded’ means that
there are only a finite number of possible signal values. Bounded discrete
values are exactly the kinds of numbers represented by computer words with
some finite number of bits.

Finiteness is another physical requirement, and comes in three vari-
eties, namely finite signal value, finite energy, and finite bandwidth. Finite-
valuedness simply means that the function desiring to be a signal must never
diverge or become mathematically singular. We are quite confident that true
physical quantities never become infinite since such behavior would require
infinite energy or force or expense of one type or another. Digital signals are
necessarily bounded in order to be representable, and so are always finite
valued. The range over which a signal varies is called its dynamic range.
Finite energy and finite bandwidth constraints are similarly grounded, but
the concepts of energy and bandwidth require a little more explanation for
the uninitiated.

Energy is a measure of the size of a signal, invented to enable the analyst
to compare the infinitely many possible signals. One way to define such a
measure might be to use the highest value the signal attains (and thus finite
energy would imply finite signal value). This would be unsatisfactory because
a generally small signal that attains a high value at one isolated point in time
would be regarded as larger than a second signal that is almost always higher
than the first. We would certainly prefer a measure that takes all times into
account. Were signals to have only positive values we could possibly use the
average signal value, but since they are not the average is ineffectual as many
seemingly large signals (e.g., Asin(wt) with large A) have zero average due
to positive and negative contributions cancelling. The simplest satisfactory
measure is given by the following definition.
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Definition: energy
The energy of an analog or digital signal s is defined to be

00 o
Es=/ s(t)dt  A|D E,= Y 2 (2.1)
-0 n=—00

the sum (or integral for the analog case) of the signal’s values squared. =

This measure is analogous to the squared length of multidimensional
vectors, and is proportional to the physical quantity known as energy when
the signal is a velocity, voltage, or current. The energy we have just defined
is also directly related to the expense involved in producing the signal; this
being the basis for the physical requirement of finite energy. The square root
of the energy defines a kind of average signal value, called the Root Mean
Squared (RMS) value.

Bandwidth is a measure not of size but of speed, the full discussion of
which we must postpone until after the notion of spectrum has been properly
introduced. A signal that fluctuates rapidly has higher bandwidth than one
that only varies slowly. Requiring finite bandwidth imposes a smoothness
constraint, disallowing sudden jump discontinuities and sharp corners. Once
again such functions violate what we believe nature considers good taste.
Physical bodies do not disappear from one place and appear in another
without traveling through all points in between. A vehicle’s velocity does
not go from zero to some large value without smoothly accelerating through
intermediate speeds. Even seemingly instantaneous ricochets are not truly
discontinuous; filming such an event with a high-speed camera would reveal
intermediate speeds and directions.

Finally, the provision for all times really means for all times of interest,
and is imposed in order to disallow various pathological cases. Certainly a
body no longer has a velocity once destroyed, and a voltage is meaningless
once the experimental apparatus is taken apart and stored. However, we
want the experimental values to settle down before we start observing, and
wish our phenomena to exist for a reasonable amount of time after we stop
tending to them.

Now that we fully understand the definition of signal, we perceive that
it is quite precise, and seemingly inoffensive. It gives us clear-cut criteria
for determining which functions or sequences are signals and which are not,
all such criteria being simple physical requirements that we would not wish
to forgo. Alas this definition is more honored in the breach than the obser-
vance. We shall often relax its injunctions in the interests of mathematical
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simplicity, and we permit ourselves to transgress its decrees knowing full
well that the ‘signals’ we employ could never really exist.

For example, although the definition requires signals to be real-valued
functions, we often use complex values in order to simplify the algebra.
What we really mean is that the ‘real’ signal is the real part of this complex
signal. This use of an ‘imaginary’ complex signal doesn’t overly bother us
for we know that we could reach the same conclusions using real values, but
it would take us longer and we would be more apt to make mistakes. We
even allow entities that aren’t actually functions at all, when it saves us a
few lines of proof text or program code!

Our definition relies on the existence of a time variable. At times the
above definition is extended to functions of other time-like independent
variables, and even to functions of more than one variable. In particular,
image processing, that deals with functions of two spatial coordinates, in-
vokes many signal processing concepts. However, in most of this book we
will not consider image processing to be part of signal processing. Although
certain basic ideas, notably filtering and spectral analysis, are common to
both image and signal processing, the truly strong techniques of each are
actually quite different.

We tend to scoff at the requirement for finite-valuedness and smooth-
ness, routinely utilizing such nonphysical constructs as tangents and square
waves, that possess an infinite number of discontinuities! Once again the
reader should understand that real-world signals can only approximate such
behavior, and that such refractory functions are introduced as mathematical
scaffolding,.

Of course signals are defined over an infinite range of times, and conse-
quently for a signal’s energy to be finite the signal must be zero over most
times, or at least decay to zero sufficiently rapidly. Strictly requiring finite
energy would rule out such useful signals as constants and periodic functions.
Accordingly this requirement too is usually relaxed, with the understanding
that outside the interval of time we observe the signal, it may well be set to
zero. Alternatively, we may allow signals to be nonzero over infinite times,
but to have finite power. Power is the energy per time

v+
1 e

Py(r) = hmf/“ (ydt  A|D P, =lim ZNS" (2.2)
n=y—4

which is time-dependent in general.
Hence although the definition we gave for signal is of good intent, its
dictates go unheeded; there is scarcely a single clause in the definition that
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we shan’t violate at some time or other. In practice entities are more often
considered signals because of the utility in so doing, rather than based on
their obeying the requirements of this definition (or any other).

In addition to all its possibly ignorable requirements, our definition also
leaves something out. It is quiet about any possible connection between ana-
log and digital signals. It turns out that a digital signal can be obtained from
an analog signal by Analog to Digital conversion (the ‘A/D’ of Figure 1.3)
also known as sampling and digitizing. When the sampling is properly car-
ried out, the digital signal is somehow equivalent to the analog one. An
analog signal can be obtained from a digital signal by Digital to Analog
conversion (the ‘D/A’ block), that surprisingly suffers from a dearth of al-
ternative names. Similar remarks can be made about equivalence. A/D and
D/A conversion will be considered more fully in Section 2.7.

EXERCISES

2.1.1 Which of the following are signals? Explain which requirement of the def-
inition is possibly violated and why it is acceptable or unacceptable to do

S0.

the height of Mount Everest
(et + e~it)

the price of a slice of pizza
the ‘sinc’ function ﬂl—itﬁ)

Euler’s totient function ¢(n), the number of positive integers less than
n having no proper divisors in common with n

AN o S A

the water level in a toilet’s holding tank

|t] the greatest integer not exceeding ¢

the position of the tip of a mosquito’s wing
Vit

10. the Dow Jones Industrial Average

11. sin(})
12. the size of water drops from a leaky faucet

© ® N o

13. the sequence of values z,, in the interval [0...1] defined by the logistics
TecCUTsion Tpy1 = AZp(l — xz,) for 0 < A < 4

2.1.2 What is the power of s(t) = Asin(wt)? The RMS value?

2.1.3 A signal’s peak factor is defined to be the ratio between its highest value and
its RMS value. What is the peak factor for s(t) = Asin(wt)? The sum of N
sinusoids of different frequencies?
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2.1.4 Define a size measure M for signals different from the energy (or RMS value).
This measure should have the following properties.

o The zero signal must have zero measure My = 0, and no other signal
should have zero measure.
o If signal y is identical to signal z shifted in time then M, = M,.

o If y, = ax, for all times, then My > M; if o > 1 and M, < M, if
a<l.

o If y, > z, almost all of the time, then M, > M,.

What advantages and disadvantages does your measure have in comparison
with the energy?

2.2 The Simplest Signals

Let us

n
=+
=
o]

1ow present a few signals, ones

studies. The simplest signal is the uni
time or s, = 1 in digital time.
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st)=1 A|D s,=1 (2.3)

Although this is the simplest signal we can imagine, it has infinite energy,
and therefore violates one of the finiteness constraints. Hence technically it
isn’t really a signal at all!l Arbitrary constant signals can be obtained by
multiplying the unit constant signal by appropriate values. The constant
signal, depicted in Figure 2.1, although admittedly trivial, can still be use-
ful. We will often call it Direct Current (DC), one of the many electronics

A

vy

Figure 2.1: The constant signal. In (A) we depict the analog constant and in (B) the
digital constant.
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Figure 2.2: The unit step signal. In (A) we depict the analog step u(t) and in (B) the
digital step un.

terms imported into signal processing. The gist is that a battery’s voltage
is constant, v(t) = Vj, and consequently induces a current that always flows
in one direction. In contrast the voltage from a wall outlet is sinusoidal,
v(t) = Vpsin(wt), and induces an Alternating Current (AC).

We cannot learn much more from this signal, which although technically
a ‘function of time’ in reality is not time dependent at all. Arguably the
simplest time-dependent signal is the unit step, which changes value at only
one point in time (see Figure 2.2). Mathematically, the analog and digital
unit step signals are:

0 t<0

u(t)=@(t)={1 ‘So AlD un:(')(n):{o n<0

1 n>0 (2.4)

respectively. In some of the literature the step function is called Heaviside’s
step function. Once again the finite energy requirement is unheeded, and
in the analog version we have a jump discontinuity as well. Here we have
set our clocks by this discontinuity, that is, we arranged for the change to
occur at time zero. It is a simple matter to translate the transition to any
other time; u(t — T') has its discontinuity at ¢ = T and up,—n has its step
at n = N. It is also not difficult to make step functions of different sizes
Au(t) and Au,, and even with any two levels Au(t) + B and Au, + B. The
unit step is often used to model phenomena that are ‘switched on’ at some
specific time.

By subtracting a digital unit step shifted one to the right from the un-
shifted digital unit step we obtain the digital unit impulse. This signal,
depicted in Figure 2.3.B, is zero everywhere except at time zero, where it
is unity. This is our first true signal, conforming to all the requirements of
our definition. In Chapter 6 we will see that the unit impulse is an invalu-
able tool in the study of systems. Rather than invent a new mathematical
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A B

Figure 2.3: The unit impulse. In (A) we depict an analog impulse of unity width. In (B)
the digital unit impulse d,,0.

symbol for this signal, we utilize one known as the Kronecker delta &y .
This doubly indexed entity is defined to be one, if and only if its indices are
equal; otherwise it is zero. In terms of the Kronecker delta, the digital unit
impulse is s, = 0p 0.

The full Kronecker delta corresponds to a Shifted Unit Impulse (SUI)

8p = 0nm (2.5)

that is zero for all times except for time n = m, when it equals one. The
importance of the set of all SUIs will become clear in Section 2.5.

One might similarly define an analog unit impulse by subtracting analog
unit steps, obtaining the Figure 2.3.A. This analog signal flagrantly displays
two jump discontinuities, but by now that should not make us feel uncom-
fortable. However, this is not the signal usually referred to as the analog unit
impulse. There is no profound meaning to the width of this signal, since in
the analog world the meaning of a unit time interval depends on the time
units! What is meaningful is the energy of the impulse, which is its ampli-
tude squared times its width. There are good reasons to expect that once
the width is small enough (i.e., small compared to all significant times in
the problem) all impulses with the same energy will have basically the same
effect on systems. Accordingly, when one speaks of a ‘unit impulse’ in the
analog domain, conventionally this alludes to a ‘unit energy’ impulse. Of
course the unit width impulse in Figure 2.3 is a unit impulse in this sense;
but so are all the others in Figure 2.4.

The unit energy impulses in the figure are given by:

0 |¢l>T
I(t) =
0-{ & M
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~1

Figure 2.4: Analog unit energy impulses. Since all of these signals have the same energy,
the height increases as the width decreases. The vertical arrow is a symbolic way of
designating Dirac’s delta function.

where T is the width. In the limit T — 0 we obtain a mathematical entity
called Dirac’s delta function 4(t), first used by P.A.M. Dirac in his mathe-
matical description of quantum physics. The name delta is purposely utilized
to emphasize that this is the ‘analog analog’ of Kronecker’s delta. The word
function is a misnomer, since Dirac’s delta is not a true function at all.
Indeed, Dirac’s delta is defined by the two properties:

e 4(t) is zero everywhere except at the origin t =0

e the integral of the delta function is unity [°° 8(¢)dt =1

and clearly there can be no such function! However, Dirac’s delta is such an
extremely useful abstraction, and since its use can be justified mathemati-
cally, we shall accept it without further question. Indeed, Dirac’s delta is so
useful, that when one refers without further qualification to the analog unit
impulse, one normally means §(t).

st)=6(t) A|D  s,=6n0 (2.6)

The next signal we wish to discuss is the square wave [J(t), depicted in
Figure 2.5.A. It takes on only two values, 1, but switches back and forth
between these values periodically. One mathematical definition of the analog
square wave is

oo={ 4, fRo e
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Figure 2.5: Three periodic analog signals. In (A) we depict the square wave, in (B) the
triangle wave and in (C) the sawtooth.

where |t| (pronounced ‘floor’ of t) is the greatest integer less than or equal
to the real number t. We have already mentioned that this signal has an
infinite number of jump discontinuities, and it has infinite energy as well!
Once again we can stretch and offset this signal to obtain any two levels,
and we can also change its period from unity to T' by employing (J(¢/T).
We can further generalize the square wave to a rectangular wave by having
it spend more time in one state than the other. In this case the percentage
of the time in the higher level is called the duty cycle, the standard square
wave having a 50% duty cycle. For digital signals the minimal duty cycle
signal that is not a constant has a single high sample and all the rest low.
This is the periodic unit impulse

dn = Z 5n,mP (28)

where the period is P samples.

Similarly we can define the analog triangle wave A(t) of Figure 2.5.B
and the sawtooth 7 (t) of Figure 2.5.C. Both, although continuous, have
slope discontinuities. We leave the mathematical definitions of these, as well
as the plotting of their digital versions, to the reader. These signals pop
up again and again in applications. The square wave and its close brethren
are useful for triggering comparators and counters, the triangle is utilized
when constant slope is required, and the sawtooth is vital as the ‘time base’
of oscilloscopes and the ‘raster scan’ in television. Equipment known as
‘function generators’ are used to generate these signals.
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Figure 2.6: Sinusoidal signals. In (A) we depict the analog sinusoid with given amplitude,
frequency and phase. In (B) the digital sinusoid is shown.

Of course the most famous periodic signal is none of these, but the sine
and cosine functions, either of which we call a sinusoid.

s(t) = sin(27 f) A|D Sp = sin(27 fyn) (2.9)

The connection between the frequency f of an analog sinusoid and its period
T can be made clear by recalling that the sine function completes a full cycle
after 27 radians. Accordingly, the frequency is the reciprocal of the period

1

f=7

and its units must be full cycles per second, also known as Hertz or Haz.

The period represents the number of seconds per cycle while the frequency

in Hz describes the number of full cycles per second. Since discrete time n

carries no units, the digital frequency f; will be essentially a pure number.
The periodicity of digital sinusoids will be discussed later.

In order to avoid factors of 27 we often rewrite equation 2.9 as follows.

s(t) = sin(wt) A|D 8p, = sin(wy n) (2.10)

Since the argument of a trigonometric function must be in radians (or de-
grees), the units of the angular frequency w = 27 f must be radians per
second, and those of the digital angular frequency wy = 27 f; simply radians.
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In many respects sin(t) is very similar to [J(t) or A(t), but it possesses
a major benefit, its smoothness. Sinusoids have neither jump nor slope dis-
continuities, elegantly oscillating back and forth (see Figure 2.6.A). More
general sinusoids can be obtained by appropriate mathematical manipula-
tion
Asin(wt + ¢) + B

where A is called the amplitude, w the frequency, ¢ the phase, and B the
DC component. Sines of infinite time duration have infinite energy, but are
otherwise eminent members of the signal community. Sinusoidal signals are
used extensively in all facets of signal processing; communications are carried
by them, music is modeled as combinations of them, mechanical vibrations
are analyzed in terms of them, clocks are set by comparing to them, and so
forth.

Although the signals sin(wt) and cos(wt) look exactly the same when
viewed separately, when several signals are involved the relative phases be-
come critical. For example, adding the signal sin(wt) to another sin(wt)
produces 2sin(wt); adding sin(wt) to cos(wt) creates v2sin(wt + I); but
adding sin(wt) to sin(wt + 7) = — sin(wt) results in zero. We can conclude
that when adding sinusoids 1+ 1 doesn’t necessarily equal 2; rather it can be
anything between 0 and 2 depending on the phases. This addition operation
is analogous to the addition of vectors in the plane, and many authors define
phasors in order to reduce sinusoid summation to the more easily visualized
vector addition. We will not need to do so, but instead caution the reader
to take phase into account whenever more than one signal is present.

Another basic mathematical function with a free parameter that is com-
monly employed in signal processing is the exponential signal

s(t) = M AlD Sp = eMdm

depicted in Figure 2.7 for negative A. For positive A and any finite time this
function is finite, and so technically it is a well-behaved signal. In practice
the function explodes violently for even moderately sized negative times,
and unless somehow restricted does not correspond to anything we actually
see in nature. Mathematically the exponent has unique qualities that make
it ideal for studying signal processing systems.

We shall now do something new; for the first time we will allow complex-
valued functions. We do this by allowing the constant in the argument of the
exponential to be a pure imaginary number A = iw, thus radically chang-



2.2. THE SIMPLEST SIGNALS 27

»
[ ]
@

t - N

Figure 2.7: Exponentially decreasing signals. In (A) we depict the analog exponential,
in (B) the digital.

ing the character of the signal. Recalling the remarkable identity (equa-
tion (A.7))

el = cos(p) + isin(yp)

we see that exponentials with imaginary coefficients are complex sinusoids.
Aet = Acos(wt) + iA sin(wt)

When we deal with complex signals like s(t) = Ael“t, what we really mean
is that the real-world signal is the real part

s(t) = Rs(t) = Acos(wt)

while the imaginary part is just that—imaginary. Since the imaginary part
is 90° (one quarter of a cycle) out of phase with the real signal, it is called
the quadrature component. Hence the complex signal is composed of in-phase
(real) and quadrature (imaginary) components.

At first it would seem that using complex signals makes things more
complez but often the opposite is the case. To demonstrate this, consider
what happens when we multiply two sinusoidal signals s;(t) = sin(w;t) and
so(t) = sin(wat). The resulting signal is

8(t) = s1(t)s2(t) = sin(wt) cos(wat) + cos(wt) sin(wat)

which is somewhat bewildering. Were we to use complex signals, the product
would be easy

S(t) — Sl(t)82(t) — eiwlteiwzt — ei(w1+w2)t
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due to the symmetries of the exponential function. The apparent contradic-
tion between these two results is taken up in the exercises.

A further variation on the exponential is to allow the constant in the
argument of the exponential to be a complex number with both real and
imaginary parts A = A + iw. This results in

2t
w)t

s(t) = AePH = 4e* cos(wt) + 1Ae* sin(wt) (2.11)

corresponding to the real signal
s(t) = Ae* cos(wt) (2.12)

which combines the exponential with the sinusoid. For negative ), this is a
damped sinusoid, while for positive A it is an exponentially growing one.
Summarizing, we have seen the following archetypical simple signals:

unit constant s(t) = sp=1

unit step s(t) = (t) Sp = Up

unit impulse s(t) = 46(t) Sp = 0Ono

square wave s(t) = O(wt) sp = O(wyn)

sinusoid s(t) = Asin(wt + ¢) sp = Asin(wn + @)
damped sinusoid s(t) = Ae M sin(wt + ¢) | s, = Aa~"sin(wn + @)
real exponential s(t) = AeM Sp=a"

complex sinusoid s(t) = Aelwite) sp = Aellean+9)
damped complex sinusoid | s(t) = Ae(AHw)t $p = AeOtlua)n

EXERCISES

2.2.1 Thomas Alva Edison didn’t believe that AC electricity was useful, since the
current first went one way and then returned. It was Nikola Tesla who claimed
that AC was actually better than DC. Why was Edison wrong (hint: energy)
and Tesla right (hint: ‘transformers’)?

2.2.2 In the text we depicted digital signals graphically by placing dots at signal
values. We will usually use such dot graphs, but other formats are prevalent
as well. A comb graph uses lines from the time axis to the signal point; a slint
graph (straight line interpolation) simply connects successive signal values;
comb-dot and slint-dot combinations are useful when the signal takes on zero
values. These formats are depicted in Figure 2.8. Write general routines for
plotting digital signals in these formats in whatever computer programming
language you usually use. Depending on your programming language you
may first have to prepare low-level primitives. Plot the digital sinusoidal
signal s, = sin{w,n) for various frequencies w in all of these formats. Decide
which you like the best. You may use this format from now on.
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Figure 2.8: Different formats for graphical representation of digital signals. In (A) we
depict a signal using our usual dot graph. In (B) the same signal is plotted as a comb graph.

In (C) it is graphed as a slint graph. (D) and (E) are comb-dot and slint-dot representations
respectively.

2.2.3

224
2.2.5

2.2.6

2.2.7

2.2.8

Give mathematical definitions for the analog triangle signal A(t) of Fig-
ure 2.5.B and for the analog sawtooth saw(t) of Figure 2.5.C.

What is the integral of the square wave signal? What is its derivative?

Using your favorite graphic format plot the digital square wave, triangle wave
and sawtooth, for various periods.

Perform the following experiment (you will need an assistant). Darken the
room and have your assistant turn on a pen-flashlight and draw large circles
in the air. Observe the light from the side, so that you see a point of light
moving up and down. Now have the assistant start walking while still drawing
circles. Concentrate on the vertical and horizontal motion of the point of light,
disregarding the depth sensation. You should see a sinusoidal signal. Prove
this. What happens when you rotate your hand in the opposite direction?
What can you infer regarding negative frequency sinusoids?

Dirac’s delta function can be obtained as the limit of sequences of functions
other than those depicted in Figure 2.4. For example,
0 t<0
asymmetric unit impulses ~ Zp(t) = % 0<t<T
0 t>T
. . 1 ¢2
Gaussian functions  G,(t) = eo?
2no
sin(wt
Sinc functions Llsinc,(t) = ——w(—t—)
1 €
Lorentzian functi L(t = -0
orentzian functions (t) s

Graph these functions for decreasing T', € and increasing o, w, graphically
showing the appearance of the Dirac delta. What new features appear? Show
that in the proper limit these functions approach zero for all nonzero times.

The integral of the analog impulse §(¢) is the unit step u(t), and conversely
the derivative of u(t) is §(¢). Explain these facts and depict graphically.
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2.2.9

2.2.10

2211

2.2.12

2.3

SIGNALS
Explain the following representation of Dirac’s delta.
d
ty=1-2
5(6) = 37l
Show that

/ " s — tdt = £t

both graphically and by using basic calculus. From this result show that 4(t)
must be zero for all nonzero arguments. Compare the above relation with the
Fourier identity

f@t) = % / ” du /_ > dtf(t)elut—t)

and derive an integral representation for the Dirac delta. What meaning can
be given to the derivative of the Dirac delta?

Plot the analog complex exponential. You will need to simultaneously plot
two sinusoids in such fashion that one is able to differentiate between them.
Extend the routines you wrote in the previous exercise to handle the digital
complex exponential.

Explain why the real signal corresponding to the product of two complex
exponentials is not the same as the product of the two real sinusoids.

Characteristics of Signals

Now that we have some experience with signals, let us discuss some general
characteristic signals can have. Signals are characterized as being:

deterministic or stochastic

if deterministic: periodic or nonperiodic
if stochastic: stationary or nonstationary
of finite or infinite time duration

of finite bandwidth or of full spectrum

Perhaps the most significant characteristic of a signal is whether it is de-
terministic or stochastic. Deterministic signals are those that are generated
by some nonprobabilistic algorithm. They are thus reproducible, predictable
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(at least over short time scales—but see Section 5.5) and well-behaved math-
ematically. Stochastic signals are generated by systems that contain random-
ness (see Section 5.6). At any particular time the signal is a random variable,
(see Appendix A.13), which may have well defined average and variance, but
is not completely defined in value. Any particular sequence of measurements
of the signal’s values at various times captures a specific instantiation of the
stochastic signal, but different sequence of measurements under the same
conditions would retrieve somewhat different values.

In practice we never see a purely deterministic signal, since even the
purest of deterministic signals will inevitably become contaminated with
noise. ‘Pure noise’ is the name we give to a quintessential stochastic signal,
one that has only probabilistic elements and no deterministic ones. When a
deterministic signal becomes contaminated with additive noise, as depicted
in Figure 2.9,

y(t) = a(t) + n(t)

we can quantify its ‘noisiness’ by the Signal to Noise Ratio (SNR). The
SNR is defined as the ratio of the signal energy to the noise energy, and is
normally measured in dB. (equation (A.16))

SNR(dB) =10 10g10 %E =10 (logm E:l} - loglo En) (213)
n

/\ M{t M\J\le
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Figure 2.9: Deterministic signal (simple sine) with gradually increasing additive noise.
In {A) the deterministic signal is much stronger than the noise, while in (D) the opposite
is the case.




32 SIGNALS

When measuring in, we usually talk about the signal as being above the
noise by SNR(dB).

Not all the signals we encounter are stochastic due solely to contami-
nation by additive noise. Some signals, for example speech, are inherently
stochastic. Were we to pronounce a single vowel for an extended period of
time the acoustic signal would be roughly deterministic; but true speech is
random because of its changing content. Speech is also stochastic for an-
other reason. Unvoiced sounds such as s and f are made by constricting air
passages at the teeth and lips and are close to being pure noise. The h sound
starts as noise produced in the throat, but is subsequently filtered by the
mouth cavity; it is therefore partially random and partially deterministic.

Deterministic signals can be periodic, meaning that they ezactly repeat
themselves after a time known as the period. The falling exponential is not
periodic, while the analog sine Asin(27 ft), as we discussed above, is peri-
odic with period T' = 1. The electric voltage supplied to our houses and the
acoustic pressure waves from a flute are both nearly perfect sinusoids and
hence periodic. The frequency of the AC supplied by the electric company
is 60 Hz (sixty cycles per second) in the United States, and 50 Hz (fifty
cycles per second) in Europe; the periods are thus 16% and 20 milliseconds
respectively. The transverse flutes used in orchestral music can produce fre-
quencies from middle C (524 Hz) to about three and a half octaves, or over
ten times, higher!

While the analog sinusoid is always periodic the digital counterpart is
not. Consider an analog signal with a period of 2 seconds. If we create a
digital sinusoid by ‘sampling’ it 10 times per second, the digital signal will
be periodic with digital period 20. However, if we sample at 10.5 times per
second, after 2 seconds we are a half-second out of phase; only after four
seconds, (i.e., 21 samples) does the digital signal coincide with its previous
values. Were we to sample at some other rate it would take even longer for
the digital version to precisely duplicate itself; and if ratio of the period to
the sampling interval is not rational this precise duplication will never occur.

Stochastic signals may be stationary, which means that their probabilis-
tic description does not change with time. This implies that all the signal’s
statistics, such as the mean and variance, are constant. If a stochastic signal
gets stronger or weaker or somehow noisier with time, it is not stationary. For
example, speech is a stochastic signal that is highly nonstationary; indeed
it is by changing the statistics that we convey information. However, over
short enough time intervals, say 30 milliseconds, speech seems stationary
because we can’t move our mouth and tongue this fast.
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A signal, analog or digital, can be of infinite or finite time duration. We
required that signals be defined for all times —co < t < 00 or n = —o0, 00,
but not that they be nonzero for all times. Real physical signals are of finite
energy, and hence are often zero for times much before or after their peak.

In like fashion, signals, analog or digital, can be of infinite or finite band-
width. According to our original definition an analog signal should be finite
bandwidth, but noise and signals with discontinuities are full spectrum. The
interpretation of this concept for digital signals must be postponed until
after clarification of the sampling theorem, in the Section 2.8.

EXERCISES

2.3.1 Look closely at the graphs of the digital sinusoid s, = sin(wn) that you
prepared in exercise 2.2.2. When is the digital sinusoid periodic? Under what
conditions is the period the same as that of the analog sinusoid? Verify the
statement in the text regarding nonperiodic digital sinusoids.

2.3.2 The purpose of this exercise is to examine the periodicity of the sum of two
analog sines. For example, the sum of a sine of period 4 seconds and one of
period 6 seconds is periodic with period 12 seconds. This is due to the first
sine completing three full periods while the second competes two full periods
in 12 seconds. Give an example of a sum that is not periodic. Give a general
rule for the periodicity. What can be said about cases when the sum is not
exactly periodic?

2.3.3 Plot analog signals composed of the sum of two sinusoids with identical am-
plitudes and frequencies f; and f,. Note that when the frequencies are close
the resultant seems to have two periods, one short and one long. What are
the frequencies corresponding to these periods? Prove your assertion using
the trigonometric identities.

2.4 Signal Arithmetic

Some of the requirements in our definition of signal were constraints on signal
values s(t) or s,, while some dealt with the signal as a whole. For example,
finite valuedness is a constraint on every signal value separately, while finite
energy and finite bandwidth requirements mix all the signal values together
into one inequality. However, even the former type of requirement is most
concisely viewed as a single requirement on the signal s, rather than an
infinite number of requirements on the values.
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This is one of the economies of notation that make it advantageous to
define signals in the first place. This is similar to what is done when one de-
fines complex numbers or n-dimensional vectors (n-vectors); in one concise
equation one represents two or even n equations. With a similar motiva-
tion of economy we define arithmetic operations on signals, thus enabling
us to write single equations rather than a (possibly nondenumerable) infi-
nite number! Hence in some ways signals are just like n-vectors of infinite
dimension.

First let us define the multiplication of a signal by a real number

Yy =azx Yy =az
means A|D means (2.14)
y(t) = az(t) Vit Yn =aT, Yn

that is, we individually multiply every signal value by the real number.
It might seem overly trivial even to define this operation, but it really is
important to do so. A signal is not merely a large collection of values, it is
an entity in its own right. Think of a vector in three-dimensional space (a
3-vector). Of course it is composed of three real numbers and accordingly
doubling its size can be accomplished by multiplying each of these numbers
by two; yet the effect is that of creating a new 3-vector whose direction is the
same as the original vector but whose length is doubled. We can visualize
this operation as stretching the 3-vector along its own direction, without
thinking of the individual components. In a similar fashion amplification
of the signal should be visualized as a transformation of the signal as a
whole, even though we may accomplish this by multiplying each signal value
separately.

We already know that multiplication of a signal by a real number can
represent an amplification or an attenuation. It can also perform an inversion

y=-—x Yy=—x
means A|D means (2.15)
y(t) = —:L‘(t) vt Yn = —Tp VN
if we take the real number to be a = —1 Here the minus sign is an ‘operator’,

transforming a signal into another, related, signal. The inverted signal has
the same energy and bandwidth as the original, and we shall see later on
has the same power spectrum. Nevertheless, every time the original signal
increases, the inverted one decreases; when the signal attains its maximum,
the inverted signal attains its minimum.

There is another way to make a signal of the same energy and power
spectrum as the original, but somehow backwards. We can reverse a signal
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using the operator Rev

y = Revz y = Revz
means A|D means (2.16)
y(t) = x(—t) Wt Yn =T—p Vn

which makes it run backwards in time. If you whistle a constant note it will
sound the same when reversed, but if you whistle with ascending pitch the
reversed signal will have descending pitch. This operation has no counterpart
for n-vectors.

Frequently we will need to add two signals,

z=x+Yy Z=x+Y
means A|D means (2.17)
z(t) = z(t) + y(t) WVt Zn=ZTp+yYn Vn

one simply adds the values. This is the familiar addition of two n-vectors,
and is the similar to the addition of complex numbers as well. Signal addition
is commutative (z +y = y + z) and associative (z + (y + 2) = (z + y) + 2)
and adding a signal to its inversion yields the zero signal. Hence signals, like
real numbers, complex numbers, and n-vectors, obey all the normal rules of
arithmetic.

We will also need to multiply two signals, and you have probably already
guessed that

z=1zy z=zxy
means A|D means (2.18)
z(t) = z(t) y(t) Vi Zn =ZTpYn VN

one simply multiplies value by value. Multiplication of a signal by a num-
ber is consistent with this definition of multiplication—just think of the
number as a constant signal. However, this multiplication is different from
multiplication of 3-vectors or complex numbers. The usual ‘dot product’
multiplication of two 3-vectors yields a scalar and not a 3-vector. There is
a cross or vector product kind of multiplication that yields a vector, but it
doesn’t generalize to n-vectors and it isn’t even commutative. Multiplication
of complex numbers yields a complex number, but there

2=y does not mean Rz=Rx Ry and Qz=zJy

which is quite different from value by value multiplication of signals.
Although value by value multiplication of signals can be very useful,
for instance in ‘mixing’ of signals (see Section 8.5), there is another type
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of multiplication, known as dot product, that is more important yet. This
product s analogous to the usual scalar product of n-vectors, and it yields
a real number that depends on the entire signal.

rT=x-Y r=zx-y
means A|D means (2.19)
r= [ z(t)y(t)dt rT=3  Tn¥n

This is the proper definition for real signals; although it can be extended for
complex signals. The energy of a signal is the dot product of the signal with
itself, while the dot product of two different signals measures their similarity
(see Chapter 9). Signals for which the dot product vanishes are said to be
orthogonal, while those for which it is large are said to be strongly correlated.

For digital signals there is another operator known as the time advance
operator z,

Yy=2zT  means Yn=2Tnpy1 VN (2.20)

which would certainly be meaningless for vectors in space. What meaning
could there possibly be for an operator that transforms the x codrdinate
of a vector into the y codrdinate? However, signals are not static vectors;
they are dynamic entities. The time variable is not a dummy variable or
index; it is physical time. We can always renumber the axes of a vector,
thus scrambling the order of elements, and still understand that the same
physical vector is described. For signals such an action is unthinkable. This
is the reason that Rev(x) had no vector counterpart. This is the reason that
our original definition of signal emphasized that the independent variable or
index was time.

You can think of z as the ‘just wait a little while and see what happens’
operator. For digital signals the natural amount of time to wait is one unit,
from n to n + 1. If we wish to peek further forward in time, we can do so.
For example, we can jump forward two units of time by first advancing one
unit and then one more

y=zzx =122 means Yn = Tps2 VN

and so on.

We may also wish to go backwards in time. This doesn’t require us to
invent a time machine, it just means that we wish to recall the value a
signal had a moment ago. A little reflection leads us to define the time delay
operator z

y=z "z means Yn =Tp-1 Vn (2.21)
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1 1

sothat zz"' ¢ = 27! 2z = z. The operator z~1 will turn out to be even more
useful than z, since it is usually easier to remember what just happened than
to predict what is about to occur. The standard method for implementing
the digital delay of L units of time is through a FIFO buffer of length L.
A signal value that enters the FIFO at time n exits at time n + L, and so
the output of the FIFO is delayed exactly L time units with respect to its
input. When used in this fashion the FIFO is called a delay line.

We can make these operators more concrete with a simple example. In

exercise 2.1.1.13 we introduced a family of recursively defined signals, often
called the logistics signals

Tn+1 = Azp(l — zy) (2.22)

where the z,, are all in the range 0 < z,, < 1. In order to enforce this last
restriction we must restrict A to be in the range 0 < A < 4. A particular
signal in this family is determined by giving z¢ and X. It is most instructive
to generate and plot values for various zo and A, and the reader will be
requested to do so as an exercise. In this case the operation of the time
advance operator can be simply specified

zz = Az(l — )

which should be understood as an equation in signals. This stands for an
infinite number of equations of the form (2.22), one for each n. However, we
needn’t return to these equations to understand it. We start with 1—z, which
really means 1+ (—z). (—z) is the inversion of the signal z; we add to it the
signal 1 that is the constant signal whose value is 1 for all times. Addition
between signals is value by value of course. Next we multiply this signal
by the original signal, using signal multiplication, value by value. Finally we
multiply this resulting signal by a real number A. So for this special case, the
time advance operator can be specified in terms of simple signal arithmetic.
Operators can be combined to create new operators. The finite difference

operator A is defined as
A=1-z71 (2.23)

that is, for any digital signal s, the following holds for all time n.
Asp = 8p — Sp—1

The finite difference operator for digital signals is vaguely similar to the dif-
ferentiation operator for continuous signals. Common characteristics include
linearity and the fact that they are identically zero only for a constant. A is a



38 SIGNALS

linear operator since for any two signals z and y, A(z+y) = Az+Ay and for
any number c and signal z, Acz = cAz. As = 0 (the zero signal) if and only
if the signal is constant. In other ways finite differences are similar to, but
not identical to derivatives. For example, A(zy) = zAy + Az z~y. In some
things finite differences are completely different, e.g., Aa™ = o™(1 — a™1).
This last example leads us to an important property of the time delay
operator. For the exponential signal s, = A" it is easy to see that

— An=1) _ oA An _ —A

Sp-1 € "Sp

so that

i.e., the operation of time delay on the exponential signal is equivalent to
multiplication of the signal by a number. In linear algebra when the effect
of an operator on a vector is to multiply it by a scalar, we call that vector
an ‘eigenvector’ of the operator. Similarly we can say that the exponential
signal is an eigensignal of the time delay operator, with eigenvalue e~
The fact that the exponential is an eigensignal of the time delay operator
will turn out to be very useful. It would have been even nicer were the

sinusoid to have been an eigensignal of time delay, but alas equation (A.23)
tells us that

Sp—1 = sin (w(n - 1)) = sin(wn) cos(w) — cos(wn) sin(w)

which mixes in phase-shifted versions of the original signal. The sinusoid
is the eigensignal of a more complex operator, one that contains two time
delays; this derives from the fact that sinusoids obey second-order differen-
tial equations rather than first-order ones like the exponential. Nonetheless,
there is a trick that saves the day, one that we have mentioned before. We
simply work with complex exponentials, which are eigensignals of time de-
lay, remembering at the end to take the real part. This tactic is perhaps the
main reason for the use of complex signals in DSP.

EXERCISES

2.4.1 Show that the exponential signal s,, = Ae?" is an eigensignal of the time
advance operator. What is its eigenvalue? The real sinusoid s, = A sin(wn+¢)
is the eigensignal of an operator that contains z~! and z~2. Can you find this
operator?

2.4.2 What is the effect of the time advance operator on the unit impulse? Express
the general SUI §,, ,,, in terms of 4,9 and the time delay operator.
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2.4.3 Compare the energy of a time delayed, advanced, or reversed signal with

that of the original signal. What is the energy of y = az in terms of that
of 7 What can be said about the energy of the sum of two signals? For
example, consider summing two sinusoids of the same frequency but different
amplitudes and phases. What about two sinusoids of different frequencies?
Why is there a difference between these two cases?

2.4.4 Plot the logistics signal of equation (2.22) using several different z¢ for each
A. Try A = 0.75 and various zo—what happens after a while? Next try
A = 1.5,2.0, and 2.75. How is the long time behavior different? Can you
predict the behavior as a function of A? Are there any starting points where
the previous behavior is still observed? Next try A = 3.2,3.5,3.55, 3.5675,
and 3.75. What is the asymptotic behavior (for almost all z4)?

2.4.5 Using the program from the previous exercise try A = 3.826, 3.625 and 3.7373.
What is the asymptotic behavior? Try A = 4. How is this different?

2.4.6 Canons are musical compositions composed of several related voices heard
together. The ‘canonical’ relations require the voices to repeat the theme of
the first voice:

time offset: after a time delay,

key shift: in a different key,

diminution: at twice normal speed,
augmentation: at half normal speed,
inversion: with high and low tones interchanged,

crab order: time reversed,

or with combinations of these. Describe the signal processing operators that
transform the basic theme into the various voices. In order for the resulting
canon to sound pleasing, at (almost) every instant of time the voices must
be harmonically related. Can you write a program that composes canons?

2.4.7 In the text we discussed the usefulness of considering a signal as a single
entity. This exercise deals with the usefulness of considering a signal as a col-
lection of values. A streaming signal is a digital signal that is made available
as time progresses. When the signal is not being streamed one must wait for
the signal to be completely prepared and placed into a file before processing.
Explain the usefulness of streaming digital audio. In certain computer lan-
guages a stream is defined to be a sequentially accessed file. Compare this
use of ‘stream’ with the previous one.
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In Section 2.2 we presented the simplest of signals; in this section we are
going to introduce you to all the rest. Of course there are an infinite number
of different signals, but that doesn’t mean that it will take a long time to
introduce them all. How can this be? Well, there are an infinite number
of points in the plane, but we can concisely describe every one using just
two real numbers, the x and y codrdinates. There are an infinite number
of places on earth, but all can be located using longitude and latitude.
Similarly there are an infinite number of different colors, but three numbers

suffice to describe them all; for pvamn]p in the RGR system we give red

VO 10,

green, and blue components. All events that have already taken place or
will ever take place in the entire universe can be located using just four
numbers (three spatial codrdinates and the time). These concise descriptions
are made possible by identifying basis elements, and describing all others as

..... ad aiima of theae Whan wa Aa g we have intradiiced o 2100ts

weighted sums of these. When we do so we have introduced a vector spac
(see Appendix A.14). The points in the plane and in space are well known
to be two-dimensional and three-dimensional vector spaces, respectively.

In the case of places on earth, it is conventional to start at the point
where the equator meets the prime meridian, and describe how to reach
any point by traveling first north and then east. However, we could just as
well travel west first and then south, or northeast and then southwest. The
choice of basic directions is arbitrary, as long as the second is not the same
as the first or its reverse. Similarly the choice of x and y directions in the
plane is arbitrary; instead of RGB we can use CMY (cyan, magenta, and

yellow), or oV (nue saturamon and value), and it is up to us to choose

the directions in space to arrive at any point in the universe (although the
direction in time is not arbl‘rrarv\

W

Can all possible signals be described in terms of some set of basic signals?
We will now convince you that the answer is affirmative by introducing
the vector space of signals. It might seem strange to you that signals form
a vector space; they don’t seem to be magnitudes and directions like the
vectors you may be used to. However, the colors also form a vector space,
and they aren’t obviously magnitudes and directions either. The proper way
to dispel our skepticism is to verify that signals obey the basic axioms of
vector spaces (presented in Appendix A.14). We will now show that not only
do signals (both the analog and digital types) form a vector space, but this

ha aduet and
space ias an inner proauct ana normni as 'v'v’CH' The fact that SngiuIS form a

vector space gives them algebraic structure that will enable us to efficiently
describe them.
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Addition: Signal addition s = s + sy according to equation (2.17),
Zero: The constant signal s, = 0 for all times n,

Inverse: The inversion —s according to equation (2.15),
Multiplication: Multiplication by a real number as in equation (2.14),
Inner Product: The dot product of equation (2.19),

Norm: The energy as defined in equation (2.1),

Metric: The energy of the difference signal obeys all the requirements.

Since signals form a vector space, the theorems of linear algebra guar-
antee that there is a basis {vg}, i.e., a set of signals in terms of which any
signal s can be expanded.

$= Y kUi (2.24)
k

The use of the summation sigma assumes that there are a finite or denu-
merable number of basis signals; when a nondenumerable infinity of basis
signals is required the sum must be replaced by integration.

o= / c(k)v(k) dk (2.25)

From linear algebra we can show that every vector space has a basis, but
in general this basis is not unique. For example, in two-dimensional space
we have the natural basis of unit vectors along the horizontal ‘z’ axis and
vertical ‘y’ axis; but we could have easily chosen any two perpendicular direc-
tions. In fact we can use any two nonparallel vectors, although orthonormal
vectors have advantages (equation (A.85)). Similarly, for the vector space of
signals there is a lot of flexibility in the choice of basis; the most common
choices are based on signals we have already met, namely the SUIs and the
sinusoids. When we represent a signal by expanding it in the basis of SUIs
we say that the signal is in the time domain; when we the basis of sinusoids
is used we say that the signal is in the frequency domain.

We are not yet ready to prove that the sinusoids are a basis; this will be
shown in Chapters 3 and 4. In this section we demonstrate that the SUIs are
a basis, i.e., that arbitrary signals can be uniquely constructed from SUIs.
We start with an example, depicted in Figure 2.10, of a digital signal that
is nonzero only between times n = 0 and n = 8. We build up this signal
by first taking the unit impulse d,, ¢, multiplying it by the first signal value
Sp, thereby obtaining a signal that conforms with the desired signal at time
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Figure 2.10: Comb-dot graph depicting building up a digital signal from shifted unit
impulses.

n = 0 but which is zero elsewhere. Next we take the shifted unit impulse
dn,1, which is nonzero only for n = 1, and multiply it by s1, thus obtaining a
signal that agrees with s, for n = 1 but is otherwise zero. Adding together
these two signals we obtain a signal that is identical to the desired signal
both at time n = 0 and at time n = 1 but otherwise zero. We proceed in a
similar fashion to build up a signal that is identical to the desired signal for
all times.

In a similar fashion we can expand any digital signal in terms of SUIs

o0
Sn= Y Smlnm (2.26)
n=-—00

thus proving that these signals span the entire space. Now, it is obvious that
no two SUlIs overlap, and so the SUIs are orthogonal and linearly indepen-
dent (no 4, can be expanded in terms of others). Therefore the SUIs are a
linearly independent set that spans the entire space, and so they are a basis.
Hence we see that the SUIs form a basis of the vector space of digital
signals. Since there are (denumerably) infinite signals in the basis, we see
that the vector space of signals is of infinite dimension. Similar statements
are true for analog signals as well. In Figure 2.11 we demonstrate approxi-
mating a function using shifted unit width analog impulses. We leave it for
the reader to complete the argument to show that any analog signal can be
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Figure 2.11: Building up an analog signal from shifted unit width impulses.

o+ o+ o+ o+

Nl 0O
o=

I

S0 u(t)

sy u(t — 1)
Sp u(t — 2)
sz u(t —3)
Sq u(t — 4)
ss u(t — 5)
se u(t — 6)
syu(t—T7)
sg u(t — 8)
Sn(t)

43

expanded in terms of shifted Dirac deltas. Dirac deltas are consequently a
basis of a vector space of (nondenumerably) infinite dimension. The deltas
(whether Kronecker or Dirac) form a basis that induces the time domain
representation of the signal.

EXERCISES

2.5.1 Show that the triangle inequality is obeyed for signals.

Z(Sln —s3,)% > (Z s1, — 82,)% + (Z $2, — 83,)°

2.5.2 Show that the set of digital signals of finite time duration is a finite dimension
vector space.

2.5.3 Express a general digital signal z,, as a sum involving only the impulse at

time zero and time delay operators.

2.5.4 Let’s try to approximate the 3-vector v = (v, vy, v;) by a vector parallel to
the = axis a,Z. The best such approximation requires that the error vector
€ = v — ;2 be of minimal squared length. Show that this criterion leads to
a; = v, and that the error vector lies entirely in the y-z plane. Similarly,
show that best approximation of v by a vector in the z-y plane o & + 0y 9,
requires oz = v; and ay = vy, and for the error vector must be parallel to
the z axis. When can the error become zero?
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2.5.5 The previous exercise leads us to define the coefficients v; as those real num-
bers that minimize the approximation error. Use this same approach to find
the expansion of a given signal s(¢) in terms of a set of normalized signals
vk (t), by requiring the error signal to be of minimal energy. Show that this
approach demystifies the use of equation (2.19) as the dot product for signals.

2.5.6 Show how to expand analog signals in terms of shifted Dirac delta functions,
by starting with Figure 2.11 and sending the impulse width to zero.

2.5.7 Explain why the set of all analog signals forms a vector space. What new
features are there? What is the dimensionality of this vector space? In what
sense are there more analog signals than digital ones?

2.5.8 Show that the set of all analog periodic signals with the same period is a
vector space. Is it denumerably or nondenumerably infinite in dimension?

2.6 Time and Frequency Domains

According to our definition a signal is a function of a signal variable, or a
singly-indexed sequence. Doesn’t that mean that digital signal processing is
some subset of mathematics, similar to analysis (calculus)?

Technically yes, of course, but in a deeper sense not at all. The first
requirement for a signal was for it to be a physical quantity; a requirement
that imparts a special flavor to signal processing, quite distinct from the
seasonings with which mathematical treatments of analysis are spiced.

The differential calculus was originally invented to help in the abstract
mathematical treatment of the kinematics of ideal bodies. As such, the em-
phasis is on derivatives and the basic functions used are polynomials. Con-
sider the kinematical quantity s = sg + vot + %atz—this function is not a
physically plausible signal as it stands, since although continuous, for large
times it diverges! Physically realizable functions should remain bounded for
all times, which rules out all polynomials except constants.

The fundamental law of differential calculus states that any function
(well not any function, but we won’t worry about that now) can be described
in the following way. First pick some time of interest, which we will call
to. Find the value of the function at that point, f(¢g). Close enough to ty
the function is always approximately f(to) due to continuity constraints.
To go a little further away from to we need the first derivative. The first
derivative describes what the function looks like close enough to tg since all
well-behaved functions are approximately linear over a small enough interval
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f(t) =~ f(to) + %lto(t —tp). If you want to know what the function does even
further away, find the second derivative evaluated at to, and then the third
derivative, etc. Higher and higher derivatives allow one to stray further and
further from the original point in time. Knowing all derivatives at any one
point in time is equivalent to knowing the function’s values at all times. This
law is called Taylor’s Theorem and is the very fabric of the classical analysis
way of looking at functions. It approximates functions using polynomials as
the basis for the vector space of functions.

The fundamental law of signal processing proclaims a different way of
representing signals. ‘Real-world’ signals have finite energy and occupy some
finite bandwidth. Hence polynomials are not a natural basis for describing
them. The signal processing approximation is global rather that local, i.e.,
for any finite order is about as good (or bad) simultaneously for all times
—00 < t < +00. Rather than using derivatives and polynomials, the signal
processing way of looking at the world emphasizes spectrum and its basic sig-
nals are sinusoids. The signal processing law (the Fourier transform) states
that all signals can be approximated by summing together basic sinusoids.

Because of this unique way of representing signals, signal processing
tends to be quite schizophrenic. One has to continuously jump back and
forth between the time domain representation, which gives the value of the
signal for all times, and the frequency domain representation, where the
harmonic content of the signal at every frequency is given.

Spectrum is simply a shorter way of saying ‘frequency domain represen-
tation’, and the idea is probably not new to you. You surely realize that
the operation of a prism on white light consists of its decomposition into
different frequencies (colors). You certainly have tuned in a station on the
radio by changing the center frequency being demodulated. You may even
have an audio system with a graphic equalizer enables amplifying certain
component acoustic frequencies more than others.

The spectrum of a signal that consists of a pure sine wave has a single
line at the frequency of this sine. The sum of two sines corresponds to two
lines in the frequency domain. If the sum is weighted the relative heights of
these lines will reflect this. In general, any signal that can be constructed
by weighted combination of a finite number of sines will have a discrete
spectrum with lines corresponding to all the frequencies and weights.

Not all signals have spectra comprised of discrete lines. For example,
the analog unit width impulse has a sinc-shaped spectrum, where the sinc
function

sin(f)

f

sinc(f) =
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Figure 2.12: The unit width analog impulse and its spectrum. In (A) we depict the
unit width impulse in the time domain, and in (B) its (sinc-function) frequency domain
representation. The latter is the raw spectrum including negative frequencies.

(see Figure 2.12). The meaning of negative spectral values and negative fre-
quencies will become clear later on. The spectrum has a strong DC compo-
nent because the impulse is nonnegative. In order to make the infinitesimally
sharp corners of the impulse, an infinite range of frequencies is required. So
although this spectrum decreases with increasing frequency, it never be-
comes zero. Its bandwidth, defined as the spectral width wherein most of
the energy is contained, is finite.

Signal processing stresses the dual nature of signals—signals have time
domain and frequency domain (spectral) characteristics. Although the signal
(time domain) and its Fourier transform (frequency domain) contain exactly
the same information, and indeed either can be constructed from the other,
some signal processing algorithms are more natural in one domain than in

the other. This dual way of looking at signals is what makes signal processing
different from mathematical analysis.

EXERCISES

2.6.1 Experiment with plotting signals composed of several sinusoids with various
frequencies and amplitudes. Can you recognize the original frequencies in
the resulting waveform? What do you observe when one sinusoid is much
stronger than the others? When all the frequencies are multiples of a common
frequency? When the frequencies are very close together? When they are well
separated? When does the signal seem unpredictable?

2.6.2 Taylor expand a sine wave (you can do this by hand since you only need to
know the derivatives of sinusoids). Fourier expand a parabola (it will probably
be easiest to use numeric Fourier transform software). What can you say
about the compactness of these descriptions?
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2.6.3 The Taylor expansion can be interpreted as the expansion of arbitrary contin-
uous functions in a basis of polynomials. Are the functions fo(z) = 1, fi(z) =
z, fo(x) = 22, fa(z) = 2%,... a basis? Are they an orthonormal basis?

2.6.4 Let’s examine a more complex signal with a discrete line spectrum. The V.34
probe signal is composed of 21 sinusoids sin(2x ft + ¢) with frequencies f
that are multiples of 150 Hz, and phases ¢ given in the following table.

f(Hz.) | ¢(deg) || f(Hz.) | ¢(des) || (Hz.) | #(deg)
150 0 1500 0 2850 0
300 180 1650 180 3000 180
450 0 1950 0 3150 180
600 0 2100 0 3300 180
750 0 2250 180 3450 180
1050 0 2550 0 3600 0
1350 0 2700 180 3750 0

Plot a representative portion of the final signal. What is special about the
phases in the table? (Hint: Try altering a few phases and replotting. Observe
the maximum absolute value of the signal.)

2.7 Analog and Digital Domains

At the end of Section 2.1 we mentioned that one can go back and forth
between analog and digital signals. A device that converts an analog signal
into a digital one is aptly named an Analog to Digital converter or A/D
(pronounced A to D) for short. The reverse device is obviously a Digital to
Analog converter or D/A (D to A). You will encounter many other names,
such as sampler, digitizer and codec, but we shall see that these are not
entirely interchangeable. In this and the next two sections we will explain
that A/D and D/A devices can work, leaving the details of how they work
for the following two sections.

In explaining the function of an A/D there are two issues to be ad-
dressed, corresponding to the two axes on the graph of the analog signal in
Figure 2.13. You can think of the A/D as being composed of two quantizers,
the sampler and the digitizer. The sampler samples the signals at discrete
times while the digitizer converts the signal values at these times to a digital
representation.

Converting a continuously varying function into a discrete time sequence
requires sampling the former at specific time instants. This may lead to a loss
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Figure 2.13: Conversion of an analog signal into a corresponding digital one involves
quantizing both axes, sampling time and digitizing signal value. In the figure we see the
original analog signal overlaid with the sampled time and digitized signal value grid. The
resulting digital signal is depicted by the dots.

of information, since many different continuous functions can correspond to
the same sampled sequence, but under certain conditions there is no such
loss. The key to understanding this surprising result is the sampling theorem.
This theorem tells us what happens when we create a discrete time signal
by sampling an analog signal at a uniform rate. The sampling theorem will
be discussed in the next section.

Converting the continuous real values of the analog signal into bounded
digital ones requires rounding them to the nearest allowed level. This will
inevitably lead to a loss of precision, which can be interpreted as adding
(real-valued) noise to each value a, = d,, + v, where v, can never exceed
one half the distance to nearby quantization levels. The effect of this noise
is to degrade the Signal to Noise Ratio (SNR) of the signal, a degradation
that decreases in magnitude when the number of available levels is increased.

Digital signals obtained from analog ones are sometimes called PCM
streams. Let’s understand this terminology. Imagine wiping out (zeroing)
the analog signal at all times that are not to be sampled. This amounts to
replacing the original continuously varying signal by a sequence of pulses
of varying amplitudes. We could have reached this same result in a slightly
different way. We start with a train of pulses of constant amplitude. We then.
vary the amplitude of each incoming pulse in order to reflect the amplitude of
the analog signal to be digitized. The amplitude changes of the original signal
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are now reflected in the varying heights of the pulses. The process of varying
some aspect of a signal in order to carry information is called modulation.
In this case we have modulated the amplitudes of the pulse stream, and
so have produced Pulse Amplitude Modulation (PAM). Other aspects of
the pulse stream could have been varied as well, resulting in Pulse Width
Modulation (PWM), and Pulse Position Modulation (PPM). We now wish
to digitally record the amplitude of each pulse, which we do by giving each
a code, e.g. the binary representation of the closest quantization level. From
this code we can accurately (but not necessarily precisely) reconstruct the
amplitude of the pulse, and ultimately of the original signal. The resulting
sequence of numbers is called a Pulse Code Modulation (PCM) stream.

EXERCISES

2.7.1 It would seem that sampling always gives rise to some loss of information,
since it always produces gaps between the sampled time instants; but some-
times we can accurately guess how to fill in these gaps. Plot a few cycles of
a sinusoid by connecting a finite number of points by straight lines (linear
interpolation). How many samples per cycle are required for the plot to look
natural, i.e., for linear interpolation to accurately predict the missing data?
How many samples per cycles are required for the maximum error to be less
than 5%7 Less than 1%?

2.7.2 Drastically reduce the number of samples per cycle in the previous exercise,
but generate intermediate samples using quadratic interpolation. How many
true samples per cycle are required for the predictions to be reasonably ac-
curate?

2.7.3 The sampling theorem gives a more accurate method of interpolation than
the linear or quadratic interpolation of the previous exercises. However, even
this method breaks down at some point. At what number of samples per
cycle can no method of interpolation work?

2.8 Sampling

We will generally sample the analog signal at a uniform rate, corresponding
to a sampling frequency fs. This means that we select a signal value every
ts = % seconds. How does t, influence the resulting digital signal? The main
effects can be observed in Figures 2.14-2.17.
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Figure 2.14: Conversion of an analog signal into the corresponding digital one with a
lower sampling rate. As in the previous figure, the original analog signal has been overlaid
with the sampled time and digitized signal value grid. However, the time interval between

samples t, is longer.
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Figure 2.15: Conversion of an analog signal into the corresponding digital one with yet
a lower sampling rate. Once again the original analog signal has been overlaid with the

sampled time and digitized signal value grid. Although there are only four samples per
cycle, the original signal is still somewhat recognizable.
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Figure 2.16: Conversion of an analog signal into a digital one at the minimal sampling
rate. Once again the original analog signal has been overlaid with the sampled time and
digitized signal value grid. Although there are only two samples per cycle, the frequency
of the original sine wave is still retrievable.
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Figure 2.17: Conversion of an analog signal into a digital one at too low a sampling
rate. Once again the original analog signal has been overlaid with the sampled time and
digitized signal value grid. With only one sample per cycle, all information is lost.
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In Figures 2.14 and 2.15 the sampling rate is eight and four samples per
cycle respectively, which is high enough for the detailed shape of the signal to
be clearly seen (it is a simple sinusoid). At these sampling rates even simple
linear interpolation (connecting the sample points with straight lines) is not
a bad approximation, although peaks will usually be somewhat truncated.
In Figure 2.16, with only two samples per cycle, we can no longer make out
the detailed form of the signal, but the basic frequency is discernible. With
only a single sample per cycle, as in Figure 2.17, even this basic frequency
is lost and the signal masquerades as DC.

Have you ever watched the wagon wheels in an old western? When the
wagon starts to move the wheels start turning as they should; but then at
some speed they anomalously seem to stand still and then start to spin
backwards! Then when the coach is going faster yet they straighten out for
a while. What is happening? Each second of the moving picture is composed
of some number (say 25) still pictures, called frames, played in rapid succes-
sion. When the wheel is rotating slowly we can follow one spoke advancing
smoothly around the axle, from frame to frame. But when the wheel is ro-
tating somewhat faster the spoke advances so far between one frame and the
next that it seems to be the next spoke, only somewhat behind. This gives
the impression of retrograde rotation. When the wheel rotates exactly the
speed for one spoke to move to the next spoke’s position, the wheel appears
to stand still.

This phenomenon, whereby sampling causes one frequency to look like
a different one, is called aliasing. The sampled pictures are consistent with
different interpretations of the continuous world, the real one now going
under the alias of the apparent one. Hence in this case the sampling caused
a loss of information, irreversibly distorting the signal. This is a general
phenomenon. Sampling causes many analog signals to be mapped into the
same digital signal. This is because the digitized signal only records the
values of the continuous signal at particular times ¢t = nt,; all analog signals
that agree at these points in time, but differ in between them, are aliased
together to the same digital signal.

Since sampling always maps many analog signals into the same digital
signal, the question arises—are there conditions under which A/D does not
cause irreparable damage? That is, is there any way to guarantee that we
will be able to recover the value of the analog signal at all times based
on the sampled signal alone? We expect the answer to be negative. Surely
the analog signal can take on arbitrary values at times not corresponding
to sample periods, and therefore many different analog signals correspond
to the same digital one. An affirmative answer would imply a one-to-one
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correspondence between analog signals obeying these conditions and the
digital signals obtained by sampling them.

Surprisingly the answer is affirmative; but what stipulation can confound
our simple logic? What restrictions can ensure that we incur no loss of
information when representing a continuous function at discrete points only?
What conditions on the signal will allow us to correctly guess the value of a
function between two times separated by ts where it is known? The answer
is finite bandwidth.

Theorem: The Sampling Theorem
Assume that the analog signal s(t) is sampled with a sampling frequency
fs = 1/ts producing the digital signal s, = s(nts).

A. If the sampling frequency is over twice that of the highest frequency
component of the signal f; > fina, then the analog signal can be recon-
structed for any desired time.

B. The reconstructed value of the analog signal at time ¢

s(t) = i Sy, sinc (’/Tfs(t - nts)) (2.27)

n=—oo

is a linear combination of the digital signal values with sinc(t) = sin(t)/t
weighting. [

At first sight the sampling theorem seems counterintuitive. We specify
the values of a signal at certain discrete instants and claim to be able to ex-
actly predict its value at other instants. Surely the signal should be able to
oscillate arbitrarily in between sampling instants, and thus be unpredictable.
The explanation of this paradox is made clear by the conditions of the sam-
pling theorem. The bandwidth limitation restricts the possible oscillations
of the analog signal between the sample instants. The signal cannot do more
than smoothly interpolate between these times, for to do so would require
higher frequency components than it possesses.

The minimal sampling frequency (a little more than twice the highest
frequency component) is called the Nyquist frequency fy = 2fmae in honor
of Harry Nyquist, the engineer who first published the requirement in 1928,
It wasn’t until 1949 that mathematician Claude Shannon published a formal
proof of the sampling theorem and the reconstruction formula. An inaccu-
rate, but easy to remember, formulation of the contributions of these two
men is that Nyquist specified when an A /D can work, and Shannon dictated
how a D/A should work.
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To better understand the Nyquist criterion consider the simple case of
a single sinusoid. Here the minimum sampling frequency is twice per cycle.
One of these sample instants will usually be in the positive half-cycle and
the in the negative one. It is just this observation of positive and negative
half-cycles that makes the sampling theorem work. It is intuitively obvious
that sampling at a lesser rate could not possibly be sufficient, since entire
half cycles will be lost. Actually even sampling precisely twice per cycle
is not sufficient, since sampling at precisely the zero or peaks conceals the
half-cycles, which is what happened in Figure 2.17. This is why the sampling
theorem requires us to sample at a strictly higher rate.

The catastrophe of Figure 2.17 is a special case of the more general
phenomenon of aliasing. What the sampling theorem tells us is that discrete
time signals with sampling rate f; uniquely correspond to continuous time
signals with frequency components less than % Sampling any continuous
time signal with higher-frequency components still provides a discrete time
signal, but one that uniquely corresponds to another, simpler signal, called
the alias. Figure 2.18 demonstrates how a high-frequency sinusoidal signal
is aliased to a lower frequency one by sampling. The two signals agree at the

sample points, but the simpler interpretation of these points is the lower-
frequency signal.
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Figure 2.18: Aliasing of high-frequency analog signal into lower-frequency one. The high-
frequency signal has only a sample every one and a half cycles, i.e., it corresponds to a

digital frequency of -2—. The lower-frequency sinusoid is sampled at four samples per cycle,
; 1
le, o= 7.
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It is conventional to define a digital frequency in the following way

:i
s

and the sampling theorem tells us that we must have ¢ < % Consistently
using this digital frequency frees us from having to think about real (analog)
frequencies and aliasing. All the DSP will be exactly the same if a 2 Hz signal
is sampled at 10 Hz or a 2 MHz signal is sampled at 10 MHz.

Before continuing we should mention that the sampling theorem we have
been discussing is not the final word on this subject. Technically it is only
the ‘low-pass sampling theorem for uniform time intervals’. If the signals of
interest have small bandwidth but are centered on some high frequency, it is
certainly sufficient to sample at over twice the highest frequency component,
but only necessary to sample at about twice the bandwidth. This is the con-
tent of the band-pass sampling theorem. It is also feasible in some instances
to sample nonuniformly in time, for example, at times 0, %, 2, 2%,4, .... For
such cases there are ‘nonuniform sampling theorems’.

Now that we understand the first half of the sampling theorem, we are
ready to study the reconstruction formula in the second half. We can rewrite
equation (2.27) as

o
s(t)= D snh(t—nts) (2.28)
n=—00

where h(t) = sinc(nfst) is called the sampling kernel. As a consequence
the reconstruction operation consists of placing a sampling kernel at every
sample time nts, weighting it by the sampled value there s,, and adding
up all the contributions (see Figure 2.19). The sine in the numerator of the
sinc is zero for all sample times nts, and hence the sampling kernel obeys
h(nts) = 6p,0. From this we immediately conclude s(nts) = s, as required.
Consequently, the reconstruction formula guarantees consistency at sample
times by allowing only the correct digital signal value to contribute there.
At no other times are the sampling kernels are truly zero, and the analog
signal value is composed of an infinite number of contributions.

In order for the reconstruction formula to be used in practice we must
somehow limit the sum in (2.28) to a finite number of contributions. Noting
that the kernel h(t) decays as ﬁ we can approximate the sum by restricting
the duration in time of each sample’s contribution. Specifically, if we wish
to take into account only terms larger than some fraction p, we should limit
each sample’s contributions to iﬁ—lp- samples from its center. Conversely this
restriction implies that each point in time to be interpolated will only receive



56 SIGNALS

Figure 2.19: The reconstruction formula depicted graphically. In (A) we see an analog
signal and the samples digitized slightly higher than twice the highest frequency compo-
nent. (B) shows the sinc kernels weighted by the sample value placed at each sample time;
note that at sample times all other sincs contribute zero. In (C) we sum the contributions
from all kernels in the area and reconstruct the original analog signal.

a finite number of contributions (from those sample instants no further than
W—lp away).
Proceeding in this fashion we obtain the following algorithm:

Given: a sampled signal z,,
its sampling interval g,
a desired time t, and
a cut-off fractiom p

w — Round(;lz—,)

Initialize 7 < O

Nmid < t_i'

Nlo = Mmid — W

Npi < Npid + W

z «— 0

for n « ny to np;

T — T + zpsinc(rith)
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EXERCISES

2.8.1 The wagon wheel introduced in the text demonstrates the principle of aliasing
in a popular context. What is the observed frequency as a function of intended
frequency.

2.8.2 Redraw Figures 2.13-2.17 with sample times at different phases of the sinu-
soid. Is a sine wave sampled at exactly twice per cycle (as in Figure 2.16)
always recoverable?

2.8.3 Redraw Figures 2.13-2.17 with a noninteger number of samples per cycle.
What new effects are observed? Are there any advantages to such sampling?
Doesn’t this contradict the sampling theorem?

2.8.4 Plot an analog signal composed of several sinusoids at ten times the Nyquist
frequency (vastly oversampled). Overlay this plot with the plots obtained for
slightly above and slightly below Nyquist. What do you observe?

2.8.5 Write a program for sampling rate conversion based on the algorithm for
reconstruction of the analog signal at arbitrary times.

2.9 Digitization

Now we return to the issue of signal value quantization. For this problem,
unfortunately, there is no panacea; there is no critical number of bits above
which no information is lost. The more bits we allocate per sample the less
noise we add to the signal. Decreasing the number of bits monotonically
reduces the SNR.

Even more critical is the matching of the spacing of the quantization
levels to the signal’s dynamic range. Were the spacing set such that the signal
resided entirely between two levels, the signal would effectively disappear
upon digitizing. Assuming there are only a finite number of quantization
levels, were the signal to vary over a much larger range than that occupied
by the quantization levels, once again the digital representation would be
close to meaningless. For the time being we will assume that the digitizer
range is set to match the dynamic range of the signal (in practice the signal
is usually amplified to match the range of the digitizer).

For the sake of our discussion we further assume that the analog signal
is linearly digitized, corresponding to b bits. This means that we select the
signal level I = —(2°71 — 1)... 4+ 2°71 that is closest to s(t,). How does b
influence the resulting digital signal? The main effects can be observed in
Figures 2.20-2.24.
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Figure 2.20: Conversion of an analog signal into a corresponding digital one involves
quantizing both axes, sampling time and digitizing signal value. In the figure we see the

original analog signal overlaid with the sampled time and digitized signal value grid. The
resulting digital signal is depicted by the dots.
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Figure 2.21: Conversion of an analog signal into the corresponding digital one with fewer
digitizing levels. As in the previous figure the original analog signal has been overlaid with

the sampled time and digitized signal value grid. However, here only 17 levels (about four
bits) are used to represent the signal.
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Figure 2.22: Conversion of an analog signal into the corresponding digital one with fewer
digitizing levels. Once again the original analog signal has been overlaid with the sampled
time and digitized signal value grid. Here only nine levels (a little more than three bits)
are used to represent the signal.
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Figure 2.23: Conversion of an analog signal into the corresponding digital one with fewer
digitizing levels. Once again the original analog signal has been overlaid with the sampled
time and digitized signal value grid. Here only five levels (about two bits) are used to
represent the signal.
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Figure 2.24: Conversion of an analog signal into the corresponding digital one with
the minimum number of digitizing levels. Once again the original analog signal has been
overlaid with the sampled time and digitized signal value grid. Here only three levels (one
and a half bits) are used to represent the signal.

Reflect upon the discrete time signal before signal value quantization
(the pulses before coding). This sequence of real numbers can be viewed as
the sum of two parts

an = dp + vy where d, = Round(ay)

and so d,, are integers and |v,| < % Assuming a,, to be within the range of
our digitizer the result of coding is to replace a, with dy, thus introducing
an error vy, (see Figure 2.25). Were we to immediately reconvert the digital
signal to an analog one with a D/A converter, we would obtain a signal
similar to the original one, but with this noise added to the signal.

The proper way of quantifying the amount of quantization noise is to
compare the signal energy with the noise energy and compute the SNR from
equation (2.13). For a given analog signal strength, as the quantization levels
become closer together, the relative amount of noise decreases. Alternatively,
from a digital point of view, the quantization noise is always a constant
:}:% levels, while increasing the number of bits in the digital representation
increases the digital signal value. Since each new bit doubles the number of
levels and hence the digital signal value

SNR(dB) ~ 10 (1og10(2’>)2 — logyo 12) = 20blog o2 ~ 6b (2.29)

that is, each bit contributes about 6 dB to the SNR. The exact relation will
be derived in exercise 2.9.2.
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Figure 2.25: Noise created by digitizing an analog signal. In (A) we see the output of a
digitizer as a function of its input. In (B) the noise is the rounding error, i.e., the output
minus the input.

We have been tacitly assuming a digitizer of infinite range. In practice
all digitizers have a maximum number of bits and thus a minimum and
maximum level. The interval of analog signal values that are translated into
valid digital values is called the dynamic range of the digitizer. Analog signal
values outside the allowed range are clipped to the maximum or minimum
permitted levels. Most digitizers have a fixed number of bits and a fixed
dynamic range; in order to minimize the quantization noise the analog signal
should be amplified (or attenuated) until it optimally exploits the dynamic
range of the digitizer. Exceeding the dynamic range of the digitizer should be
avoided as much as possible. Although moderate amounts of saturation are
not usually harmful to the digitizer hardware, signal clipping is introduced.
For a signal with high Peak to Average Ratio (PAR), one must trade off
the cost of occasional clipping with the additional quantization noise.

Signal to noise ratios only have significance when the ‘noise’ is truly ran-
dom and uncorrelated with the signal. Otherwise we could divide a noiseless
signal into two equal signals and claim that one is the true signal, the other
noise, and the SNR is 0 dB! We have been tacitly assuming here that the
quantization noise is truly noise-like and independent of the signal, although
this is clearly not the case. What is the character of this ‘noise’?

Imagine continuously increasing the input to a perfect digitizer from
the minimum to the maximum possible input. The output will only take
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quantized values, essentially rounding each input to the closest output level.
Hence the output as a function of the input will produce a graph that looks
like a staircase, as in Figure 2.25.A. Accordingly the rounding error, the
output minus the input, will look like a sawtooth, as in Figure 2.25.B. Thus
the quantization ‘noise’ is predictable and strongly correlated with the sig-
nal, not random and uncorrelated as we tacitly assumed. This result seems
contradictory—if the noise signal is predictable, then it isn’t noise at all.
Were the error to be truly predictable, then one could always compensate
for it, and digitizing would not harm the signal at all. The resolution of this
paradox is simple. The noise signal is indeed correlated to the analog signal,
but independent of the digitized signal. After digitizing the analog signal is
unavailable, and the noise becomes, in general, unpredictable.

EXERCISES

2.9.1 Dither noise is an analog noise signal that can be added to the analog signal
before digitizing in order to lessen perceived artifacts of round-off error. The
dither must be strong enough to effectively eliminate spurious square wave
signals, but weak enough not to overly damage the SNR. How much dither
should be used? When is dither needed?

2.9.2 Refine equation (2.29) and derive SNR = (2log,, 2b+1.8)dB by exploiting the
statistical uniformity of the error, and the definition of standard deviation.

2.9.3 Plot the round-off error as a function of time for sinusoids of amplitude 15,
and frequencies 1000, 2000, 3000, 1100, 1300, 2225, and 3141.5 Hz, when
sampled at 8000 samples per second and digitized to integer levels (-15, -14,

.., 0, ..., 14, 15). Does the error look noise-like?

2.10 Antialiasing and Reconstruction Filters

Recall that in Figure 1.3 there were two filters marked antialiasing filter and
reconstruction filter that we avoided discussing at the time. Their purpose
should now be clear. The antialiasing filter should guarantee that no fre-
quencies over Nyquist may pass. Of course no filter is perfect, and the best
we can hope for is adequate attenuation of illegal frequencies with minimal
distortion of the legal ones. The reconstruction filter needs to smooth out
the D/A output, which is properly defined only at the sampling instants,
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and recreate the proper behavior at all times. In this section we will briefly
discuss these filters.

Assume that the highest frequency of importance in the signal to be
sampled is frqz. Strictly speaking the sampling theorem allows us to sample
at any frequency above the Nyquist frequency fn = 2fmaz, but in practice
we can only sample this way if there is absolutely nothing above fiaz.
If there are components of the signal (albeit unimportant ones) or other
signals, or even just background noise, these will fold back onto the desired
signal after sampling unless removed by the antialiasing filter. Only an ideal
antialiasing filter, one that passes perfectly all signals of frequency less than
fmaz and blocks completely all frequencies greater than fy.z, would be able
to completely remove the undesired signals; and unfortunately, as we shall
learn in Section 7.1, such an ideal filter cannot be built in practice.

Realizable antialiasing filters pass low frequencies, start attenuating at
some frequency f1, and attenuate more and more strongly for higher and
higher frequencies, until they effectively block all frequencies above some
f2. We must be sure that the spectral areas of interest are below f; since
above that they will become attenuated and distorted; however, we can’t
use 2f; as our sampling frequency since aliasing will occur. Thus in order to
utilize realizable filters we must sample at a frequency 2fs, higher than the
sampling theorem strictly requires. Typically sampling frequencies between
20% and 100% higher (1.2fn < fs < 2fn) are used. The extra spectral
‘real-estate’ included in the range below I21 is called a guard band.

The D/A reconstruction filter’s purpose is slightly less obvious than that
of the antialiasing filter. The output of the D/A must jump to the required
digital value at the sampling time, but what should it do until the next
sampling time? Since we have no information about what the analog signal
does, the easiest thing to do is to stay constant until the next sampling time.
Doing this we obtain a piecewise constant or ‘boxcar’ signal that doesn’t ap-
proximate the original analog signal very well. Alternatively, we might wish
to linearly interpolate between sampling points, but there are two difficul-
ties with this tactic. First, the linear interpolation, although perhaps better
looking than the boxcar, is not the proper type of interpolation from the
signal processing point of view. Second, and more importantly, interpolation
of any kind is noncausal, that is, requires us to know the next sample value
before its time. This is impossible to implement in real-time hardware. What
we can do is create the boxcar signal, and then filter it with an analog filter
to smooth the sharp transitions and eliminate unwanted frequencies.

The antialiasing and reconstruction filters may be external circuits that
the designer must supply, or may be integral to the A/D and D/A devices
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themselves. They may have fixed cutoff frequencies, or may be switchable,
or completely programmable. Frequently DSP software must set up these
filters along with initialization and setting sampling frequency of the A/D
and D/A. So although we shall not mention them again, when designing,
building, or programming a DSP system, don’t forget your filters!

EXERCISES

2.10.1 Simulate aliasing by adding sinusoids with frequencies above Nyquist to prop-
erly sampled sinusoidal signals. (You can perform this experiment using ana-
log signals or entirely on the computer.) Make the aliases much weaker than
the desired signals. Plot the resulting signals.

2.10.2 If you have a DSP board with A/D and D/A determine how the filters are
implemented. Are there filters at all or are you supposed to supply them
externally? Perhaps you have a ‘sigma-delta’ converter that effectively has
the filter built into the A/D. Is there a single compromise filter, several filters,
or a programmable filter? Can you control the filters using software? Measure
the antialiasing filter’s response by injecting a series of sine waves of equal
amplitude and increasing frequency.

2.10.3 What does speech sound like when the antialiasing filter is turned off? What
about music?

2.11 Practical Analog to Digital Conversion

Although in this book we do not usually dwell on hardware topics, we will
briefly discuss circuitry for A/D and D/A in this section. We have two rea-
sons for doing this. First, the specifications of the analog hardware are of
great important to the DSP software engineer. The DSP programmer under-
stand what is meant by such terms as ‘one-bit sampling’ and ‘effective bits’
in order to properly design and debug software systems. Also, although we
all love designing and coding advanced signal processing algorithms, much of
the day-to-day DSP programming has to do with interfacing to the outside
world, often by directly communicating with A/D and D/A devices. Such
communication involves initializing, setting parameter values, checking sta-
tus, and sending/receiving data from specific hardware components that the
programmer must understand well. In addition, it is a fact of life that A/D
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components occasionally fail, especially special-purpose fast A/D convert-
ers. The DSP software professional should know how to read the signs of a
failing A/D, and how to test for deficiencies and to evaluate performance.

Perhaps the simplest A/D to start with is the so-called flash converter,
the block diagram of which is given in Figure 2.26. The triangles marked
‘comp’ are comparators that output ‘one’ when the voltage applied to the in
input is higher than that applied to the reference input ref, and ‘zero’ oth-
erwise. For a b bit A/D converter we require 2° such comparators (including
the highest one to indicate an overflow condition). The reference inputs to
the comparators must be as precise as possible, and for this reason are often
derived from a single voltage source.

Every sampling time a voltage x is applied to the input of the digitizer.
All the comparators whose reference voltages are less than z will fire, while
those with higher references will not. This behavior reminds one of a mercury
thermometer, where the line of mercury reaches from the bottom up to a
line corresponding to the correct temperature, and therefore this encoding is
called a thermometer code. The thermometer code requires 2° bits to encode
2 values, while standard binary encoding requires only b bits. It would
accordingly be not only nonstandard but also extremely inefficient to use it
directly. The function of the block marked ‘thermometer to binary decoder’
in the diagram is to convert thermometer code into standard binary. It is
left as an exercise to efficiently implement this decoder.

The main drawback of the flash converter is its excessive cost when a
large number of bits is desired. A straightforward implementation for 16-
bit resolution would require 216 reference voltages and comparators and a
216 by 16 decoder! We could save about half of these, at the expense of
increasing the time required to measure each voltage, by using the following
tactic. As a first step we use a single comparator to determine whether
the incoming voltage is above or below half-scale. If it is below half-scale,
we then determine its exact value by applying it to a bank of %217 = 2b-1
comparators. If it is above half-scale we first shift up the reference voltages
to all of these 20~! comparators by the voltage corresponding to half-scale,
and only then apply the input voltage. This method amounts to separately
determining the MSB, and requires only 2°~! 4 1 comparators.

Why should we stop with determining the MSB separately? Once it
has been determined we could easily add another step to our algorithm to
determine the second most significant bit, thus reducing to 26=2 4 3 the
number of comparators needed. Continuing recursively in this fashion we
find that we now require only b stages, in each of which we find one bit,
and only b comparators in all. Of course other compromises are possible,



66 SIGNALS

OVERFLOW

(2* - 1)e

|
WV

THERMO-
METER

%

TO

comp
pef

BINARY

[T
comp DECODER
.,

VY

v

Figure 2.26: Schematic diagram of a flash converter A/D.

for example, n most significant bits can be determined by a coarse flash
converter, and then the remaining b — n bits by an appropriately shifted
fine converter. These methods go by the name serial-parallel or half-flash
converters.

In order to use such a device we would have to ensure that the input
voltage remains constant during the various stages of the conversion. The
time taken to measure the voltage is known as the aperture time. Were
the voltage to fluctuate faster than the aperture time, the result would be
meaningless. In order to guarantee constancy of the input for a sufficient
interval a sample and hold circuit is used. The word ‘hold’ is quite descriptive
of the circuit’s function, that of converting the continuously varying analog
signal into a piecewise constant, boxcar signal.

When a sample and hold circuit is employed, we can even reduce the
number of comparators employed to one, at the expense of yet a further
increase in aperture time. We simply vary the reference voltage through
all the voltages in the desired range. We could discretely step the voltage
through 2° discrete levels, while at the same time incrementing a counter;
the desired level is the value of this counter when the reference voltage
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first passes the sample and hold voltage. Stepping through 2° levels can be
a complex and time-intensive job, and can be replaced by a continuously
increasing ramp. The counter is replaced by a mechanism that measures the
time until the comparator triggers. A sawtooth waveform is usually utilized
in order to quickly return to the starting point. This class of A/D converters
is called a counting converter or a slope converter.

High-precision counting converters are by their very nature extremely
slow. Successive-approzimation converters are faster for the same reason
that half-flash are faster than flash converters. The principle is to start with
a steep slope, thus quickly determining a rough approximation to the input
voltage. Once the reference passes the input it is reduced one level and
further increased at a slower rate. This process continues until the desired
number of bits has been obtained.

Now that we understand some of the principles behind the operation
of real-world A/D devices, we can discuss their performance specifications.
Obviously the device chosen must be able to operate at the required sam-
pling rate, with as many bits of accuracy as further processing requires.
However, bits are not always bits. Imagine a less-than-ethical hardware en-
gineer, whose design fails to implement the require number of bits. This
engineer could simply add a few more pins to his A/D chip, not connecting
them to anything in particular, and claim that they are the least significant
bits of the converter. Of course they turn out to be totally uncorrelated to
the input signal, but that may be claimed to be a sign of noise. Conversely, if
a noisy input amplifier reduces the SNR below that given by equation (2.29)
we can eliminate LSBs without losing any signal-related information. A/D
specifications often talk about the number of effective bits as distinct from
the number of output bits. Effective bits are bits that one can trust, the num-
ber of bits that are truly input-signal correlated. We can find this number
by reversing the use of equation (2.29).

The number of effective bits will usually decrease with the frequency
of the input signal. Let’s understand why this is the case. Recall that the
A /D must actually observe the signal over some finite interval, known as the
aperture time, in order to determine its value. For a low-frequency signal this
is not problematic since the signal is essentially constant during this entire
time. However, the higher the frequency the more the signal will change
during this interval, giving rise to aperture uncertainty. Consider a pure sine
wave near where it crosses the axis. The sine wave is approximately linear
in this vicinity, and its slope (derivative) is proportional to the frequency.
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From these considerations it is easy to see that

fTapertm‘e S 2—b (230)

so that the effective bits decrease with increasing frequency.

The sigma-delta, or one-bit, digitizer is a fundamentally different kind
of A/D device. Although the principles have been known for a long time,
sigma-delta digitizing has become fashionable only in the last few years. This
is because its implementation has only become practical (read inezpensive)
with recent developments in VLSI practice.

With delta-PCM one records the differences (‘delta’s) between successive
signal values rather than the values themselves. It is clear that given the
initial value and a sequence of such differences the original signal may be
recovered. Hence delta-PCM carries information equivalent to the original
PCM. The desirability of this encoding is realized when the signal does
not vary too rapidly from sample to sample. In this case these differences
will be smaller in absolute value (and consequently require fewer bits to
capture) than the signal values themselves. This principle is often exploited
to compress speech, which as we shall see in Section 19.8 contains more
energy at low frequencies.

When the signal does vary too much from sample to sample we will con-
stantly overflow the number of bits we have allotted to encode the difference.
To reduce the possibility of this happening we can increase the sampling
rate. Each doubling of the sampling rate should reduce the absolute value
of the maximum difference by a factor of two and accordingly decrease the
number of bits required to encode it by one. We therefore see a trade-off
between sampling frequency and bits; we can sample at Nyquist with many
bits, or owversample with fewer bits. Considering only the number of bits
produced, slower is always better; but recalling that the number of com-
parators required in a flash converter increases exponentially in the number
of bits encoded, faster may be cheaper and more reliable. In addition there
is another factor that makes an oversampled design desirable. Since we are
oversampling, we can implement the antialiasing filter digitally, making it
more dependable and flexible.

It would seem that we have just made our A/D more complex by re-
quiring digital computation to be performed. However, reconstructing the
original signal from its delta encoding requires digital computation in any
case, and the antialiasing filter can be combined with the reconstruction.
The overall computation is a summing (represented mathematically by the
letter sigma) of weighted differences (deltas) and consequently these designs
are called sigma-delta converters.
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Carried to its logical extreme delta encoding can be limited to a one-bit
representation of the analog signal, an encoding designated delta modulation.
As in a conventional A/D we observe the signal at uniformly spaced inter-
vals, but now we record only whether the signal has increased or decreased
as compared to the last sampling interval. When the signal is sufficiently
oversampled, and now we may require extremely high sampling frequencies,
we can still recover the original signal. This is the principle behind what is
advertised as one-bit sampling.

Before leaving our discussion of hardware for moving between analog and
digital domains, we should mention D/A designs. D/A devices are in general
similar to A/D ones. The first stage of the D/A is the antidigitizer (a device
that converts the digital representation into an appropriate analog voltage).
In principle there need be no error in such a device, since all digitized levels
are certainly available in the continuous world. Next comes the antisampler,
which must output the antidigitized values at the appropriate clock times.
Once again this can, in principle, be done perfectly. The only quandary is
what to output in between sampling instants. We could output zero, but
this would require expensive quickly responding circuits, and the resulting
analog signal would not really resemble the original signal at all. The easiest
compromise is to output a boxcar (piecewise constant) signal, a sort of anti-
sample-and-hold! The signal thus created still has a lot of ‘corners’ and
accordingly is full of high-frequency components, and must be smoothed by
an appropriate low-pass filter. This ‘anti-antialiasing filter’ is what we called
the ‘reconstruction filter’ in Figure 1.3. It goes by yet a third name as well,
the sinc filter, a name that may be understood from equation (2.27).

EXERCISES

2.11.1 Design a thermometer to binary converter circuit for an eight level digitizer
(one with eight inputs and three outputs). You may only use logical gates,
devices that perform the logical NOT, AND, OR, and XOR of their inputs.

2.11.2 A useful diagnostic tool for testing A/D circuits is the level histogram. One
inputs a known signal that optimally occupies the input range and counts
the number of times each level is attained. What level histogram is expected
for a white noise signal? What about a sinusoid? Write a program and find
the histograms for various sounds (e.g., speech, musical instruments).

2.11.3 An A/D is said to have bad transitions when certain levels hog more of the
input range than they should. An A/D is said to have a stuck bit when
an output bit is constant, not dependent on the input signal. Discuss using
sawtooth and sinusoidal inputs to test for these malfunctions.



70 BIBLIOGRAPHICAL NOTES

2.11.4 A signal that is too weak to be digitized can sometimes be captured using
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added before digitizing. Explain and demonstrate how dithering works.

2.11.5 Delta encoding is often allocated fewer bits than actually needed. In this
cases we must round the differences to the nearest available level. Assuming
uniform spacing of quantization levels, how much noise is introduced as a
function of the number of bits. Write a program to simulate this case and try
it on a speech signal. It is often the case that smaller differences are more
probable than larger ones. How can we exploit this to reduce the quantization
error?

2.11.6 Fixed step size delta modulation encodes only the sign of the difference
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oversample by b, the number of bits in the original digitized signal. Recon-
struction of the signal involves adding or subtracting a fixed 4, according to
8y, = 841 + dnd. What problems arise when § is too small or too large?
Invent a method for fixes these problems and implement it.

2.11.7 Prove equation (2.30).
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The material in this chapter is treated to some extent in all of the elementary books
on DSP. Probably the first book devoted to DSP was the 1969 text by Gold and
Rader [79]. The author, like many others, first learned DSP from the classical text
by Oppenheim and Schafer [185] that has been updated and reissued as [186]. A
more introductory text co-authored by Oppenheim is [187]. Another comprehensive
textbook with a similar ‘engineering approach’ is by Proakis and Manolakis [200].
A very comprehensive but condensed source for almost everything related to DSP
is the handbook edited by Mitra and Kaiser [241].

More accessible to non-engineers, but at a much more elementary level and
covering much less ground is the book by Marven and Ewers [159]. Steiglitz has
written a short but informative introductory book [252]. Finally, Mclellan, Schafer
and Yoder have compiled a course for first year engineering students that includes
demos and labs on a CD [167].
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The Spectrum of Periodic Signals

Signals dwell both in the time and frequency domains; we can equally ac-
curately think of them as values changing in time (time domain), or as
blendings of fundamental frequencies (spectral domain). The method for de-
termining these fundamental frequencies from the time variations is called
Fourier or spectral analysis. Similar techniques allow returning to the time
domain representation from the frequency domain description.

It is hard to believe that 300 years ago the very idea of spectrum didn’t
even exist, that less than 200 years ago the basic mechanism for its cal-
culation was still controversial, and that as recently as 1965 the algorithm
that made its digital computation practical almost went unpublished due to
lack of interest. Fourier analysis is used so widely today that even passing
mention of its most important applications is a lengthy endeavor. Fourier
analysis is used in quantum physics to uncover the structure of matter on
the smallest of scales, and in cosmology to study the universe as a whole.
Spectroscopy and X-ray crystallography rely on Fourier analysis to analyze
the chemical composition and physical structure from minute quantities of
materials, and spectral analysis of light from stars tells us of the composition
and temperature of bodies separated from us by light years. Engineers rou-
tinely compute Fourier transforms in the analysis of mechanical vibrations,
in the acoustical design of concert halls, and in the building of aircraft and
bridges. In medicine Fourier techniques are called upon to reconstruct body
organs from CAT scans and MRI, to detect heart malfunctions and sleep dis-
orders. Watson and Crick discovered the double-helix nature of DNA from
data obtained using Fourier analysis. Fourier techniques can help us differ-
entiate musical instruments made by masters from inferior copies, can assist
in bringing back to life deteriorated audio recordings of great vocalists, and
can help in verifying a speaker’s true identity.

In this chapter we focus on the concepts of spectrum and frequency,
but only for periodic signals where they are easiest to grasp. We feel that
several brief historical accounts will assist in placing the basic ideas in proper
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context. We derive the Fourier series (FS) of a periodic signal, find the FS for
various signals, and see how it can be utilized in radar signal processing. We
briefly discuss its convergence and properties, as well as its major drawback,
the Gibbs phenomenon. We also introduce a new notation that uses complex
numbers and negative frequencies, in order to set the stage for the use of
Fourier techniques in the analysis of nonperiodic signals in the next chapter.

3.1 Newton’s Discovery

Isaac Newton went over to the window and shuttered it, completely dark-
ening the room. He returned to his lab bench, eager to get on with the
experiment. Although he was completely sure of the outcome, he had been
waiting to complete this experiment for a long time.

The year was 1669 and Newton had just taken over the prestigious Lu-
casian chair at Cambridge. He had decided that the first subject of his
researches and lectures would be optics, postponing his further development
of the theory of fluxions (which we now call the differential calculus). Dur-
ing the years 1665 and 1666 Newton had been forced to live at his family’s
farm in Lincolnshire for months at time, due to the College being closed on
account of the plague. While at home he had worked out his theory of flux-
ions, but he had also done something else. He had perfected a new method
of grinding lenses.

While working with these lenses he had found that when white light
passed through lenses it always produced colors. He finally gave up on trying
to eliminate this ‘chromatic aberration’ and concluded (incorrectly) that the
only way to make a truly good telescope was with a parabolic mirror instead
of a lens. He had just built what we now call a Newtonian reflector telescope
proving his theory. However, he was not pleased with the theoretical aspects
of the problem. He had managed to avoid the chromatic aberration, but
had not yet explained the source of the problem. Where did the colors come
from?

His own theory was that white light was actually composed of all possible
colors mixed together. The lenses were not creating the colors, they were
simply decomposing the light into its constituents. His critics on this matter
were many, and he could not risk publishing this result without iron clad
proof; and this present experiment would vindicate his ideas.

He looked over the experimental setup. There were two prisms, one to
break the white light into its constituent colors, and one that would hopefully
combine those colors back into white light again. He had worked hard in
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polishing these prisms, knowing that if the experiment failed it would be
because of imperfections in the glass. He carefully lit up his light source
and positioned the prisms. After a little experimentation he saw what he
had expected; in between the prisms was a rainbow of colors, but after the
second prism the light was perfectly white. He tried blocking off various
colors and observed the recomposed light’s color, putting back more and
more colors until the light was white again. Yes, even his most vehement
detractors at the Royal society would not be able to argue with this proof.

Newton realized that the white light had all the colors in it. He thought
of these colors as ghosts which could not normally be seen, and in his Latin
write-up he actually used the word specter. Later generations would adopt
this word into other languages as spectrum, meaning all of the colors of the
rainbow.

Newton’s next step in understanding these components of white light
should have been the realization that the different colors he observed cor-
responded to different frequencies of radiation. Unfortunately, Newton, the
greatest scientist of his era, could not make that step, due to his firm belief
that light was not composed of waves. His years of experimentation with
lenses led him to refute such a wave theory as proposed by others, and
to assert a corpuscular theory, that light was composed of small particles.
Only in the twentieth century was more of the truth finally known; light is
both waves and particles, combined in a way that seventeenth-century sci-
ence could not have imagined. Thus, paradoxically, Newton discovered the
spectrum of light, without being able to admit that frequency was involved.

EXERCISES

3.1.1 Each of the colors of the rainbow is characterized by a single frequency,
while artists and computer screens combine three basic colors. Reconcile the
one-dimensional physical concept of frequency with the three-dimensional
psychological concept of color.

3.1.2 Wavepackets are particle-like waves, that is, waves that are localized in space.
For example, you can create a wavepacket by multiplying a sine wave by a
Gaussian

s(t) = eiz_z—ola)3 sin(wt)

where p is the approximate location. Plot the signal in space for a given time,
and in time for a given location. What is the uncertainty in the location of
the ‘particle’? If one wishes the ‘particle’ to travel at a speed v, one can
substitute p = vt. What happens to the space plot now? How accurately can
the velocity be measured?
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3.2 Frequency Components

Consider a simple analog sinusoid. This signal may represent monochromatic
light (despite Newton’s prejudices), or a single tone of sound, or a simple
radio wave. This signal is obviously periodic, and its basic period T is the time
it takes to complete one cycle. The reciprocal of the basic period, f = %, the
number of cycles it completes in a second, is called the frequency. Periods are
usually measured in seconds per cycle and frequencies in cycles per second,
or Hertz (Hz). When the period is a millisecond the frequency is a kilohertz
(KHz) and a microsecond leads to a megahertz (MHz).

Why did we need the qualifier basic in ‘basic period’? Well, a signal which
is periodic with basic period T, is necessarily also periodic with period 27T,
3T, and all other multiples of the basic period. All we need for periodicity
with period P is for s(t + P) to equal s(t) for all ¢, and this is obviously
the case for periods P which contain any whole number of cycles. Hence
if a sinusoid of frequency f is periodic with period P, the sinusoid with
double that frequency is also periodic with period P. In general, sinusoids
with period nf (where n is any integer) will all be periodic with period P.
Frequencies that are related in this fashion are called harmonics.

A pure sine is completely specified by its frequency (or basic period),
its amplitude, and its phase at time t = 0. For more complex periodic
signals the frequency alone does not completely specify the signal; one has
to specify the content of each cycle as well. There are several ways of doing
this. The most straightforward would seem to require full specification of the
waveform, that is the values of the signal in the basic period. This is feasible
for digital signals, while for analog signals this would require an infinite
number of values to be specified. A more sophisticated way is to recognize
that complex periodic signals have, in addition to their main frequency, many
other component frequencies. Specification of the contributions of all these
components determines the signal. This specification is called the signal’s
spectrum.

What do we mean by frequency components? Note the following facts.

e The multiplication of a periodic signal by a number, and the addition
of a constant signal, do not affect the periodicity.

e Sinusoids with period nf (where n is any integer) are all periodic with

period P = % These are harmonics of the basic frequency sinusoid.

e The sum of any number of signals all of which are periodic with period
T, is also periodic with the same period.
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From all of these facts together we can conclude that a signal that results
from weighted summing of sinusoidal signals with frequencies nf, and possi-
bly addition of a constant signal, is itself periodic with period P = . Such a
trigonometric series is no longer sinusoidal, indeed it can look like just about
anything, but it is periodic. You can think of the spectrum as a recipe for
preparing an arbitrary signal; the frequencies needed are the ingredients,
and the weights indicate how much of each ingredient is required.

The wealth of waveforms that can be created in this fashion can be
demonstrated with a few examples. In Figure 3.1 we start with a simple sine,
and progressively add harmonics, each with decreased amplitude (the sine
of frequency kf having amplitude %) On the left side we see the harmonics
themselves, while the partial sums of all harmonics up to that point appear
on the right. It would seem that the sum tends to a periodic sawtooth signal,
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Figure 3.1: Building up a periodic sawtooth signal —7 (t) from a sine and its harmonics.
In (A) are the component sinusoids, and in (B) the composite signal.

Figure 3.2: Building up a periodic square wave signal from a sine and its odd harmonics.
In (A) are the component sinusoids, and in (B) the composite signal.
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and this feeling is strengthened when the summation is carried out to higher
harmonics. Surprisingly, when we repeat this feat with odd harmonics only
we get a square wave

K 1

I§)2k+1

sin ((2k + 1)wt) — O(2) (3.2)

as can be seen in Figure 3.2.

The signal f(t) = sin(wt) is an odd function of ¢, that is f(—t) = — f(¢).
Since the sum of odd functions is odd, all signals generated by summing only
harmonically related sines will be odd as well. If our problem requires an
even function, one for which f(—t) = f(t), we could sum cosines in a similar
way. In order to produce a signal that is neither odd nor even, we need to
sum harmonically related sines and cosines, which from here on we shall call
Harmonically Related Sinusoids (HRSs). In this way we can produce a huge
array of general periodic signals, since any combination of sines and cosines
with frequencies all multiples of some basic frequency will be periodic with
that frequency.

In fact, just about anything, as long as it is periodic, can be represented
as a trigonometric series involving harmonically related sinusoids. Just about
anything, as long as it is periodic, can be broken down into the weighted
sum of sinusoidal signals with frequencies nf, and possibly a constant sig-
nal. When first discovered, this statement surprised even the greatest of
mathematicians.

EXERCISES

3.2.1 In the text we considered summing all harmonics and all odd harmonics with
amplitude decreasing as % Why didn’t we consider all even harmonics?

3.2.2 When two sinusoids with close frequencies are added beats with two observ-
able frequencies result. Explain this in terms of the arguments of this section.

3.2.3 To what waveforms do the following converge?

1 % _ ;rgf(coigz) + cose’(;iz) + cos5(25:c) + .- )
2. 2og(epg e egg e 4
3. 14 lsin(r)- 2(6032) 4 soin) | smom) )
4 % _ %(coigz) _ 0082(221) + cosa(é'ix) + - )
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3.3 Fourier’s Discovery

The idea of constructing complex periodic functions by summing trigono-
metric functions is very old; indeed it is probable that the ancient Baby-
lonians and Egyptians used it to predict astronomical events. In the mid-
eighteenth century this idea engendered a great deal of excitement due to
its possible application to the description of vibrating strings (such as violin
strings). The great eighteenth-century Swiss mathematician Leonard Euler
realized that the equations for the deflection of a freely vibrating string ad-
mit sinusoidal solutions. That is, if we freeze the string’s motion, we may
observe a sinusoidal pattern. If the string’s ends are fixed, the boundary
conditions of nondeflecting endpoints requires that there be an even num-
ber of half wavelengths, as depicted in Figure 3.3. These different modes
are accordingly harmonically related. The lowest spatial frequency has one
half-wavelength in the string’s length L, and so is of spatial frequency 5117
cycles per unit length. The next completes a single cycle in L, and so is of
frequency % This is followed by three half cycles giving frequency %, and
so on. The boundary conditions ensure that all sinusoidal deflection patterns
have spatial frequency that is a multiple of ﬁ

However, since the equations for the deflection of the string are linear,
any linear combination of sinusoids that satisfy the boundary conditions is
also a possible oscillation pattern. Consequently, a more general transverse
deflection trace will be the sum of the basic modes (the sum of HRSs). The

Figure 3.3: The instantaneous deflection of a vibrating string may be sinusoidal, and
the boundary conditions restrict the possible frequencies of these sines. The top string
contains only half of its wavelength between the string’s supports; the next contains a full
wavelength, the third three-quarters, etc.
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question is whether this is the most general pattern of deflection. In the eigh-
teenth and nineteenth century there were good reasons for suspecting the
answer to be negative. Not having the benefit of the computer-generated
plots of sums of HRSs presented in the previous section, even such great
mathematicians as Lagrange believed that all such sums would yield smooth
curves. However, it was easy to deform the string such that its shape would
be noncontinuous (e.g., by pulling it up at its middle point forcing a trian-
gular shape). What would happen the moment such a plucked string was
released? Since the initial state was supposedly not representable in terms
of the basic sinusoidal modes, there must be other, nonsinusoidal, solutions.
This was considered to be a fatal blow to the utility of the theory of trigono-
metric series. It caused all of the mathematicians of the day to lose interest
in them; all except Jean Baptiste Joseph Fourier. In his honor we are more
apt today to say ‘Fourier series’ than ‘trigonometric series’.

Although mathematics was Fourier’s true interest, his training was for
the military and clergy. He was sorely vexed upon reaching his twenty-first
birthday without attaining the stature of Newton, but his aspirations had to
wait for some time due to his involvement in the French revolution. Fourier
(foolishly) openly criticized corrupt practices of officials of Robespierre’s gov-
ernment, an act that led to his arrest and incarceration. He would have gone
to the guillotine were it not for Robespierre himself having met that fate
first. Fourier returned to mathematics for a time, studying at the Ecole Nor-
mal in Paris under the greatest mathematicians of the era, Lagrange and
Laplace. After that school closed, he began teaching mathematics at the
Ecole Polytechnique, and later succeeded Lagrange to the chair of mathe-
matical analysis. He was considered a gifted lecturer, but as yet had made
no outstanding contributions to science or mathematics.

Fourier then once again left his dreams of mathematics in order to join
Napoleon’s army in its invasion of Egypt. After Napoleon’s loss to Nel-
son in the Battle of the Nile, the French troops were trapped in Egypt,
and Fourier’s responsibilities in the French administration in Cairo included
founding of the Institut d’Egypte (of which he was secretary and member of
the mathematics division), the overseeing of archaeological explorations, and
the cataloging of their finds. When he finally returned to France, he resumed
his post as Professor of Analysis at the Ecole Polytechnique, but Napoleon,
recalling his administrative abilities, snatched him once again from the uni-
versity, sending him to Grenoble as Prefect. Although Fourier was a most
active Prefect, directing a number of major public works, he neglected nei-
ther his Egyptological writing nor his scientific research. His contributions
to Egyptology won him election to the French Academy and to the Royal
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Society in London. His most significant mathematical work is also from this
period. This scientific research eventually led to his being named perpetual
secretary of the Paris Academy of Sciences.

Fourier was very interested in the problem of heat propagation in solids,
and in his studies derived the partial differential equation

v 0%

at oz
now commonly known as the diffusion equation. The solution to such an
equation is, in general, difficult, but Fourier noticed that there were solutions
of the form f(t)g(x), where f(t) were decreasing exponentials and g(x) were
either sin(nz) or cos(nz). Fourier claimed that the most general g(z) would
therefore be a linear combination of such sinusoids

o0
g(z) = Z (ak sin(kz) + by cos(kx)) (3.3)
k=0
the expansion known today as the Fourier series. This expansion is more
general than that of Euler, allowing both sines and cosines to appear simul-
taneously. Basically Fourier was claiming that arbitrary functions could be
written as weighted sums of the sinusoids sin(nz) and cos(nz), a result we
now call Fourier’s theorem.

Fourier presented his theorem to the Paris Institute in 1807, but his
old mentors Lagrange and Laplace criticized it and blocked its publication.
Lagrange once again brought up his old arguments based on the inability
of producing nonsmooth curves by trigonometric series. Fourier eventually
had to write an entire book to answer the criticisms, and only this work
was ever published. However, even this book fell short of complete rigorous
refutation of Lagrange’s claims. The full proof of validity of Fourier’s ideas
was only established later by the works of mathematicians such as Dirichlet,
Riemann, and Lebesgue. Today we know that all functions that obey certain
conditions (known as the Dirichlet conditions), even if they have discontin-
uous derivatives or even if they are themselves discontinuous, have Fourier
expansions.

EXERCISES

3.3.1 Consider functions f(t) defined on the interval —1 <t < 1 that are defined
by finite weighted sums of the form 3, fi cos(mkt), where k is an integer.
What do all these functions have in common? What about weighted sums of
sin(mkt)?
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3.3.2 Show that any function f(t) defined on the interval —1 < ¢ < 1 can be written
as the sum of an even function f(t) (fe(—t) = fe(—t)) and an odd function
(fo(=t) = = fo(-1)).

3.3.3 Assume that all even functions can be represented as weighted sums of cosines
as in the first exercise, and that all odd functions can be similarly rep-

resented as weighted sums of sines. Explain how Fourier came to propose
equation (3.3).

3.3.4 How significant is the difference between a parabola and half a period of
a sinusoid? To find out, approximate z(t) = cos(t) for - <t < Z by
y(t) = at? + bt + c. Find the coefficients by requiring y(—t) = y(t), y(0) = 1
and y(+%) = 0. Plot the cosine and its approximation. What is the maximal
error? The cosine has slope 1 at the ends of the interval; what is the slope
of the approximation? In order to match the slope at t = 17 as well, we
need more degrees of freedom, so we can try y(¢) = at* + bt2 + ¢. Find the
coefficients and the maximum error.

3.4 Representation by Fourier Series

In this section we extend our discussion of the mathematics behind the
Fourier series. We will not dwell upon formal issues such as conditions for
convergence of the series. Rather, we have two related tasks to perform.
First, we must convince ourselves that Fourier was right, that indeed any
function (including nonsmooth ones) can be uniquely expanded in a Fourier
Series (FS). This will demonstrate that the sinusoids, like the SUIs of Sec-
tion 2.5, form a basis for the vector space of periodic signals with period T.
The second task is a practical one. In Section 3.2 we posited a series and
graphically determined the periodic signal it represented. Our second task
is to find a way to do the converse operation—given the periodic signal to
find the series.

In Section 2.5 we saw that any digital signal could be expanded in the
set of all SUIs. It was left as exercises there to show that the same is true
for the analog domain, and in particular for periodic analog signals. The
set of all shifted analog impulses (Dirac delta functions) 6(t — 7) forms a
basis in which all analog signals may be expanded. Now, since we are dealing
with periodic signals let us focus on the signal’s values in the time interval
between time zero and time T'. It is clear that it is sufficient to employ
shifted impulses for times from zero to T' to recreate any waveform in this
time interval.
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The desired proof of a similar claim for HRSs can rest on our showing
that any shifted analog impulse in the required time interval can be built
up from such sinusoids. Due to the HRS’s periodicity in T, the shifted im-
pulse will automatically be replicated in time to become a periodic ‘impulse
train’. Consequently the following algorithm finds the HRS expansion of any
function of period T'.

focus on the interval of time from t=0 to t=T

expand the desired signal in this interval in shifted impulses
for each impulse substitute its HRS expansion

rearrange and sort the HRS terms

consider this to be the desired expansion for all ¢

All that remains is to figure out how to represent an impulse in terms
of HRSs. In Section 3.2 we experimented with adding together an infinite
number of HRSs, but always with amplitudes that decreased with increasing
frequency. What would happen if we used all harmonics equally?

bo + cos(t) + cos(2t) + cos(3t) + cos(4t) + ... (3.4)

At time zero all the terms contribute unity and so the infinite sum diverges.
At all other values the oscillations cancel themselves out. We demonstrate
graphically in Figure 3.4 that this sum converges to an impulse centered
at time zero. We could similarly make an impulse centered at any desired
time by using combinations of sin and cos terms. This completes the demon-
stration that any analog impulse centered in the basic period, and thus any
periodic signal, can be expanded in the infinite set of HRSs.
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Figure 3.4: Building up an impulse from a cosine and its harmonics.
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We are almost done. We have just shown that the HRSs span the vector
space of periodic analog signals. In order for this set to be a basis the ex-
pansions must be unique. The usual method of proving uniqueness involves
showing that there are no extraneous signals in the set, i.e., by showing that
the HRSs are linearly independent. Here, however, there is a short-cut; we
can show that the HRSs comprise an orthonormal set, and we know from
Appendix A.14 that all orthonormal sets are linearly independent.

In Section 2.5 the dot product was shown to be a valid scalar multipli-
cation operation for the vector space of analog signals. For periodic analog
signals we needn’t integrate over all times, rather the product given by

T
r=z-y means T= /0 z(t) y(t) dt (3.5)

(where the integration can actually be performed over any whole period)
should be as good. Actually it is strictly better since the product over all
times of finite-valued periodic signals may be infinite, while the present

product always finite. Now it will be useful to try out the dot product on
sinusoids.

We will need to know only a few definite integrals, all of which are

derivable from equation A.34. First, the integral of any sinusoid over any
number of whole periods gives zero

T 2m
i —t = .
/O mn(T)dt 0 (3.6)

since sin(—z) = —sin(z), and so for every positive contribution to the in-
tegral there is an equal and opposite negative contribution. Second, the
integral of sin? (or cos?) over a single period is

T o T
in2 — = — .
/0 sin (Tt> dt 5 (3.7

which can be derived by realizing that symmetry dictates

T 2r T 2r
= in2 [ 22 = 220
I—/O sin (Tt>dt '/0 cos (Tt>dt

and so

T o 2n T
= i 2 — 2 — —— —
2]—/0 (sm (Tt)-f-cos (Tt)) dt /0 ldt=T
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by identity (A.20). Somewhat harder to guess is the fact that the integral
of the product of different harmonics is always zero, i.e.

T  (2mn 2rm
A sin (Tt) COS (Tt) dt = 0 Vn,m >0
T  /97mn . (2mm T
/0 sin (Tt> sin <—T_t> dt = 5n,m '2— (38)

T 2mn 2rm T
/0 cos (Tt) cos( T t) dt = 5n,m§

the proof of which is left as an exercise.
These relations tell us that the set of normalized signals {vg}{2, defined
by

vo(t) = %

vok+1(t) = \/;cos <¢t> Vk>0

vor(t) = \/gsin (g;—r,—’it) Vk>0

forms an orthonormal set of signals. Since we have proven that any signal
of period T" can be expanded in these signals, they are an orthonormal set
of signals that span the space of periodic signals, and so an orthonormal
basis. The {vg} are precisely the HRSs to within unimportant multiplica-
tive constants, and hence the HRSs are an orthogonal basis of the periodic
signals. The Fourier series takes on a new meaning. It is the expansion of
an arbitrary periodic signal in terms of the orthogonal basis of HRSs.

We now return to our second task—given a periodic signal s(t), we now
know there is an expansion:

s(t) = 3 i ve(t)
k=1

How do we find the expansion coeflicients c;? This task is simple due to
the basis {vx} being orthonormal. From equation A.85 we know that for an
orthonormal basis we need only to project the given signal onto each basis
signal (using the dot product we defined above).

ck:s~v=/0Ts(t)vk(t)dt
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This will give us the coefficients for the normalized basis. To return to the
usual HRSs

> 27k s 2k
s(t) = apsin | —t} + by cos (—t)
© = Ya () > bwoos (.

= ) asin (lt) +bo+ Y bycos (21’%) (3.9)
= T T

k=1
is not difficult.

2 (T . (27k
ar = f/o s(t)51n(7-t) dt

b = 7 /OTs(t)dt (3.10)

2 (T 2k
bk = TA S(t)COS (Tt> dt

This result is most fortunate; were the sinusoids not orthogonal, finding
the appropriate coefficients would require solving ‘normal equations’ (see
Appendix A.14). When there are a finite number N of basis functions, this
is a set of N equations in N variables; if the basis is infinite we are not even
able to write down the equations!

These expressions for the FS coefficients might seem a bit abstract, so
let’s see how they really work. First let’s start with a simple sinusoid s(t) =
Asin(wt) + B. The basic period is T = %" and so the expansion can contain
only sines and cosines with periods that divide this 7. The DC term is, using
equations (3.6) and (3.7),

1 (T 1 (T . (2w 1
bO_T/O s(t)dt—T/o (Asm<?t)+3)dt-——z—,BT—B

as expected, while from equations (3.8) all other terms are zero except for
one.
2 (7T 27k
a = T/o s(t) sin (%t) dt

2 (T . (2 L (2 2 T
= -1—1/0 (Amn(?t)+B>sm(—,:l-,—t)dt—TA§—A

This result doesn’t surprise us since the expansion of one of basis signals
must be exactly that signal!
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Slightly more interesting is the case of the square wave [(J(t/T). There
will be no DC term nor any cosine terms, as can be seen by direct symmetry.
To show this mathematically we can exploit a fact we have previously men-
tioned, that the domain of integration can be over any whole period. In this
case it is advantageous to use the interval from —7'/2 to T'/2. Since [J(¢/T)
is an odd function, i.e., O(—t/T) = —[J(¢/T'), the contribution from the left
half interval exactly cancels out the contribution of the right half interval.
This is a manifestation of a general principle; odd functions have only sine
terms, while even functions have only DC and cosine term contributions.
The main contribution for [(J(¢/T") will be from the sine of period T, with

coefficient
2 (T . (2m
a = T/o s(t) sin (—ft) dt
2 % .
= —f/ sm( ) t—--—/ sm( )
4
= T / sin ( ) dt = -

while the sine of double this frequency

2 [ ()= [Fan (42 2 [T () o

cannot contribute because of the odd problem once again. Therefore only
odd harmonic sinusoids can appear, and for them

a = %/Ts(t)sin (?t) dt
_ T/ sin (27Tk) _%/ (27rk> dt
S IICOIEE

which is exactly equation (3.2).

EXERCISES

3.4.1 Our proof that the HRSs span the space of periodic signals required the HRSs
to be able to reproduce all SUIs, while Figure 3.4 reproduced only an impulse
centered at zero. Show how to generate arbitrary SUIs (use a trigonometric
sum formula).
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3.4.2 Observe the sidelobes in Figure 3.4. What should the constant term by be
for the sidelobes to oscillate around zero? In the figure each increase in the
number of cosines seems to add another half cycle of oscillation. Research
numerically the number and amplitude of these oscillations by plotting the
sums of larger numbers of cosines. Do they ever disappear?

3.4.3 Reproduce a graph similar to Figure 3.4 but using sines instead of cosines.
Explain the results (remember that sine is an odd function). Why isn’t the
result simply a shifted version of cosine case?

3.4.4 Find the Fourier series coefficients for the following periodic signals. In order
to check your results plot the original signal and the partial sums.

1. Sum of two sines a; sin(wt) + ag sin(2wt)
2. Triangular wave
3. Fully rectified sine |sin(z)|

4. Half wave rectified sine sin(z)u(sin(x))

3.4.5 We can consider the signal s(t) = Asin(wt) + B to be periodic with period
T= %. What is the expansion now? Is there really a difference?

3.4.6 For the two-dimensional plane consider the basis made up of unit vectors
along the x axis A; = (1,0) and along the 45° diagonal A = (%, %) The
unit vector of slope 1 is Y = (725, 715) Find the coefficients of the expansion
Y = a14: + azA; by projecting Y on both A; and A, and solving the
resulting equations.

3.4.7 Find explicitly the normal equations for a set of basis signals Ax(t) and
estimate the computational complexity of solving these equations.

3.5 Gibbs Phenomenon

Albert Abraham Michelson was the first American to receive a Nobel prize
in the sciences. He is justly famous for his measurement of the speed of
light and for his part in the 1887 Michelson-Morley experiment that led to
the birth of the special theory of relativity. He invented the interferometer
which allows measurement of extremely small time differences by allowing
two light waves to interfere with each other. What is perhaps less known is
that just after the Michelson-Morley experiment he built a practical Fourier
analysis device providing a sort of physical proof of Fourier’s mathematical
claims regarding representation of periodic signals in terms of sinusoids. He
was quite surprised when he found that the Fourier series for the square wave
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[J(t) didn’t converge very well. In fact there was significant ‘ringing’, both-
ersome oscillations that wouldn’t go away with increasing number of terms.
Unsure whether he had discovered a new mathematical phenomenon or sim-
ply a bug in his analyzer he turned to the eminent American theoretical
physicist of the time, Josiah Willard Gibbs. Gibbs realized that the problem
was caused by discontinuities. Dirichlet had shown that the Fourier series
converged to the midpoint at discontinuities, and that as long as there were
a finite number of such discontinuities the series would globally converge;
but no one had previously asked what happened near a discontinuity for a
finite number of terms. In 1899 Gibbs published in Nature his explanation
of what has become known as the Gibbs phenomenon.

In Section 3.3 we mentioned the Dirichlet conditions for convergence of
the Fourier series.

Theorem: Dirichlet’s Convergence Conditions
Given a periodic signal s(t), if

1. s(t) is absolutely integratable, i.e., [ ls('t)|dt < 00, where the integral
is over one period,

2. s(t) has at most a finite number of extrema,  and
3. s(t) has at most a finite number of finite discontinuities,

then the Fourier series converges for every time. At discontinuities the series
converges to the midpoint. |

To rigorously prove Dirichlet’s theorem would take us too far afield so we
will just give a taste of the mathematics one would need to employ. What is
necessary is an analytical expression for the partial sums Sk(t) of the first
K terms of the Fourier series. It is useful to define the following sum

K
Dk (t) = 3 + cos(t) + cos(2t) + ... + cos(Kt) = 3+ Z cos(kt)  (3.11)
k=1
and to find for it an explicit expression by using trigonometric identities.
sin ((K + %)t)

Dr(t) = 2sin(%t)

(3.12)

It can then be shown that for any signal s(¢) the partial sums equal

Sk(t) = %fs(t—i— 1) Dg (%?—7’) dr (3.13)
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Figure 3.5: Partial sums of the Fourier series of a periodic square wave signal [](¢) for
K =0,1,2,3,5 and 7. Note that although far from the discontinuity the series converges
to the square wave, near it the overshoot remains.

(the integration being over one period of duration T') from which Dirichlet’s
convergence results emerge.

Now you may believe, as everyone did before Gibbs, that Dirichlet’s
theorem implies that amplitude of the oscillations around the true values
decreases as we increase the number of terms in the series. This is the case
except for the vicinity of a discontinuity, as can be seen in Figure 3.5. We
see that close to a discontinuity the partial sums always overshoot their
target, and that while the time from the discontinuity to the maximum
overshoot decreases with increasing K, the overshoot amplitude does not
decrease very much. This behavior does not contradict Dirichlet’s theorem
since although points close to jump discontinuities may initially be affected
by the overshoot, after enough terms have been summed the overshoot will
pass them and the error will decay.

For concreteness think of the square wave [J(t). For positive times close
to the discontinuity at ¢t = 0 equation (3.13) can be approximated by

Sk(t) = ;2; sgn(t) Sinc (47 K|t|) (3.14)
as depicted in Figure 3.6. Sinc is the sine integral.
¢
Sinc(t) =/ sinc(r) dr
0
Sinc approaches § for large arguments, and thus Sk (t) does approach unity

for large K and/or t. The maximum amplitude of Sinc occurs when its
derivative (sinc) is zero, i.e., when its argument is 7. It is not hard to find
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Figure 3.6: Gibbs phenomenon for the discontinuity of the square wave at ¢t = 0. Plotted

are the square wave, the partial sum with K = 3 terms, and the approximation using the
sine integral.

numerically that for large K this leads to an overshoot of approximately
0.18, or a little less than 9% of the height of the jump. Also, the sine integral
decays to its limiting value like %; hence with every doubling of distance from
the discontinuity the amplitude of the oscillation is halved. We derived these
results for the step function, but it is easy to see that they carry over to a
general jump discontinuity.

That’s what the mathematics says, but what does it mean? The os-
cillations themselves are not surprising, this is the best way to smoothly
approximate a signal-—sometimes too high, sometimes too low. As long as
these oscillations rapidly die out with increasing number of terms the ap-
proximation can be considered good. What do we expect to happen near a
discontinuity? The more rapid a change in the signal in the time domain is,
the wider the bandwidth will be in the frequency domain. In fact the un-
certainty theorem (to be discussed in Section 4.4) tells us that the required
bandwidth is inversely proportional to the transition time. A discontinuous
jump requires an infinite bandwidth and thus no combination of a finite
number of frequencies, no matter how many frequencies are included, can
do it justice. Of course the coefficients of the frequency components of the
square wave do decrease very rapidly with increasing frequency. Hence by
including more and more components, that is, by using higher and higher
bandwidth, signal values closer and closer to the discontinuity, approach
their proper values. However, when we approximate a discontinuity using
bandwidth BW, within about 1/BW of the discontinuity the approxima-
tion cannot possibly approach the true signal.



90 THE SPECTRUM OF PERIODIC SIGNALS

We can now summarize the Gibbs phenomenon. Whenever a signal has
a jump discontinuity its Fourier series converges at the jump time to the
midpoint of the jump. The partial sums display oscillations before and after
the jump, the number of cycles of oscillation being equal to the number
of terms taken in the series. The size of the overshoot decreases somewhat
with the number of terms, approaching about 9% of the size of the jump.
The amplitude of the oscillations decreases as one moves away from the
discontinuity, halving in amplitude with every doubling of distance.

EXERCISES

3.5.1 Numerically integrate sinc(t) and plot Sinc(t). Show that it approaches +3
for large absolute values. Find the maximum amplitude. Where does it occur?
Verify that the asymptotic behavior of the amplitude is %

3.5.2 The following exercises are for the mathematically inclined. Prove equa-
tion (3.12) by term-by-term multiplication of the sum in the definition of
Dk (t) by sin (%) and using trigonometric identity (A.32).

3.5.3 Prove equation (3.13) and show Dirichlet’s convergence results.
3.5.4 Prove the approximation (3.14).

3.5.5 Lanczos proposed suppressing the Gibbs phenomenon in the partial sum Sk
by multiplying the k*P Fourier coefficient (except the DC) by sinc (Z£). Try
this for the square wave. How much does it help? Why does it help?

3.5.6 We concentrated on the Gibbs phenomenon for the square wave. How do
we know that other periodic signals with discontinuities act similarly? (Hint:
Consider the Fourier series for s(t) + a[J(t) where s(t) is a continuous signal
and a a constant.)

3.6 Complex FS and Negative Frequencies

The good news about the Fourier series as we have developed it is that its
basis signals are the familiar sine and cosine functions. The bad news is
that its basis signals are the familiar sine and cosine functions. The fact
that there are two different kinds of basis functions, and that the DC term
is somewhat special, makes the FS as we have presented it somewhat clumsy
to use. Unfortunately, sines alone span only the subspace composed of all
odd signals, while cosines alone span only the subspace of all even signals.
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Signals which are neither odd nor even. truly require combinations of both
Since the FS in equation (3.9) includes for every frequency both a sine and
cosine function (which differ by 90° or a quarter cycle), it is said to be in
quadrature form.

The first signal space basis we studied, the SUI basis, required only one
functional form. Is there a single set of sinusoidal signals, all of the same type,
that forms a basis for the space of periodic signals? Well, for each frequency
component w the FS consists of the sum of two terms a cos(wt) + bsin(wt).
Such a sum produces a pure sinusoid of the same frequency, but with some
phase offset dsin(wt + ). In fact, it is easy to show that

ag sin(wt) + by cos(wt) = dy sin(wt + py) (3.15)

as long as

dy = Jai + b2 @k = tan™" (by, ax) (3.16)

where the arctangent is the full four-quadrant function, and

ap = dk COS Yk bk = dk sin Pk (3.17)

in the other direction.
As a result we can expand periodic signals s(t) as

> ok
t) =dgo + dj sin (—t + ) 3.18
) = do+ > dusin (Sr+ 18)

with both amplitudes and phases being parameters to be determined.

The amplitude and phase form is intellectually more satisfying than the
quadrature one. It represents every periodic signal in terms of harmonic
frequency components, each with characteristic amplitude and phase. This is
more comprehensible than representing a signal in terms of pairs of sinusoids
in quadrature. Also, we are often only interested in the power spectrum,
which is the amount of energy in each harmonic frequency. This is given by
|dx|? with the phases ignored.

There are drawbacks to the amplitude and phase representation. Chief
among them are the lack of symmetry between dy and ¢ and the lack
of simple formulas for these coefficients. In fact, the standard method to
calculate dy and ¢y is to find ax and by and use equations (3.16)!

We therefore return to our original question: Is there a single set of
sinusoidal signals, all of the same type, that forms a basis for the space of
periodic signals and that can be calculated quickly and with resort to the
quadrature representation? The answer turns out to be affirmative.
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To find this new representation recall the connection between sinusoids
and complex exponentials of equation (A.8).

cos(wt) = % (ei“’t + e”i‘*’t) sin(wt) = 21 (ei‘*’t - e_i‘“t) (3.19)
1

We can think of the exponents with positive el and negative e* expo-
nents as a single type of exponential €'“* with positive and negative frequen-
cies w. Using only such complex exponentials, although of both positive and
negative frequencies, we can produce both the sine and cosine signals of the
quadrature representation, and accordingly represent any periodic signal.

o0
st)= S el (3.20)
k=—-o001

We could once again derive the expression for the coefficients c; from those
for the quadrature representation, but it is simple enough to derive them
from scratch. We need to know only a single integral.

T i2mng _j2rmg
/0 A P g — 5, T (3.21)

This shows that the complex exponentials are orthogonal with respect to
the dot product for complex signals

T
o1 -8 = / s1(t) s3(t) dt (3.22)
0
and that 1
w(t) = —= el (3.23)

VT

form a (complex) orthonormal set. From this it is easy to see that

)= L [ sty eiBE g 3.24
=7 [ e (3.24)

with a minus sign appearing in the exponent. Thus Fourier’s theorem can be
stated in a new form: All periodic functions (which obey certain conditions)
can be written as weighted sums of complex exponentials.

The complex exponential form of the FS is mathematically the simplest
possible. There is only one type of function, one kind of coefficient, and
there is strong symmetry between equations (3.20) and (3.24) that makes
them easier to remember. The price to pay has been the introduction of
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mysterious negative frequencies. What do we mean by -100 Hz? How can
something cycle minus 100 times per second?

Physically, negative frequency signals are almost identical to their posi-
tive counterparts, since only the real part of a complex signal counts. Recall
the pen-flashlight experiment that you were requested to perform in exer-
cise 2.2.6. The complex exponential corresponds to observing the flashlight
head-on, while the real sinusoid is observing it from the side. Rotation of
the light in clockwise or counterclockwise (corresponding to positive or neg-
ative frequencies) produces the same effect on an observer who perceives
just the vertical (real) component; only an observer with a full view notices
the difference. However, it would be foolhardy to conclude that negative
frequencies are of no importance; when more than one signal is present the
relative phases are crucial.

We conclude this section with the computation of a simple complex ex-
ponential FS—that of a real sinusoid. Let s(t) = Acos(—z—;—,—k-t). The period is
of course T, and

T 2 j2z A T 12x s2r s 2m
cp = 51;/0 Acos(%t) it gp = T/o %(el%t+e—1%t) o1k g

which after using the orthogonality relation (3.21) leaves two terms.

A A
% = 57 Ok,—1 + T Ok, +1

This is exactly what we expected considering equation (3.19). Had we chosen
s(t) = Asin(zg—kt) we would have still found two terms with identical k¥ and
amplitudes but with phases shifted by 90°. This is hardly surprising; indeed
it is easy to see that all s(t) = Acos(%t—{— ) will have the same FS except
for phase shifts of . Such constant phase shifts are meaningless, there being
no meaning to absolute phase, only to changes in phase.

EXERCISES

3.6.1 Plot sin(z) + sin(2z + ¢) with ¢ =0, %, , %’l What can you say about the
effect of phase? Change the phases in the Fourier series for a square wave.
What signals can you make?

3.6.2 Derive all the relations between coefficients of the quadrature, amplitude and
phase, and complex exponential representations. In other words, show how
to obtain ar and by from ¢ and vice versa; ax and by from di and vice versa,
¢ from di and vice versa. In your proofs use only trigonometric identities
and equation (A.7).
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3.6.3 Prove equation (3.21).

3.6.4 Calculate the complex exponential FS of s(t) = Asin(2%£¢). How does it
differ from that of the cosine?

3.6.5 Consistency requires that substituting equation (3.20) for the F'S into equa-
tion (3.24) for ¢x should bring us to an identity. Show this using (3.21). What
new expression for the delta function is implied by the reverse consistency
argument?

3.6.6 What transformations can be performed on a signal without effecting its
power spectrum |cx|2? What is the physical meaning of such transformations?

3.7 Properties of Fourier Series

In this section we continue our study of Fourier series. We will exclusively
use the complex exponential representation of the FS since it is simplest,
and in any case we can always convert to other representations if the need
arises.

The first property, which is obvious from the expression for ¢y, is linearity.
Assume s (t) has FS coefficients ¢} and s5(t) has coefficients c2, then s(t) =
Asq(t) + Bsa(t) has as its coefficients ¢, = Ac} + Bcj. This property is often
useful in simplifying calculations, and indeed we already implicitly used it in
our calculation of the FS of cos(wt) = %e“"t + %e““’t. As a further example,
suppose that we need to find the FS of a constant (DC) term plus a sinusoid.
We can immediately conclude that there will be exactly three nonzero cg
terms, c_;, Co, and c4;.

In addition to its being used as a purely computational ploy, the linearity
of ¢;, has theoretic significance. The world would be a completely different
place were the F'S not to be linear. Were the FS of As(t) not to be Acy then
simple amplification would change the observed harmonic content of a signal.
Linear operators have various other desirable features. For example, small
changes to the input of a linear operator can only cause bounded changes to
the output. In our case this means that were one to slightly perturb a signal
with known FS, there is a limit to how much ¢ can change.

The next property of interest is the effect of time shifts on the FS. By
time shift we mean replacing ¢ by ¢t — 7, which is equivalent to resetting our
clock to read zero at time 7. Since the time we start our clock is arbitrary
such time shifts cannot alter any physical aspects of the signal being studied.

Once again going back to the expression for ¢ we find that the F'S of s(t—7)
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i2nk
is e~ 1% ck- The coefficients magnitudes are unchanged, but the phases have

been linearly shifted. As we know from exercise 3.6.6 such phase shifts do
not change the power spectrum but still may be significant. We see here that
phase shifts that are linear in frequency correspond to time shifts.

When a transformation leaves a signal unchanged or changes it in some
simple way we call that transformation a symmetry. Time shift is one inter-
esting symmetry, and another is time reversal Rev s. Although the import
of the latter is less compelling than the former many physical operations are
unchanged by time reversal. It is not difficult to show that the effect of time
reversal is to reverse the FS to c_g.

The next property of importance was discovered by Parseval and tells
us how the energy can be recovered from the FS coefficients.

1 T 2 - 2
E=z [ s@Pd= 3 lal (3.25)
T Jo i
=—00
What does Parseval’s relation mean? The left hand side is the power com-
puted over a single period of the periodic signal. The power of the sum of two
signals equals the sum of the powers if and only if the signals are orthogonal.

T / (t)|* dt % / ! x(t)+y(t))* (a:(t)—{—y(t)) dt
= T/ )1 + |y( )|2+2§R<x*(t)y(t)) dt

Since any two different sinusoids are uncorrelated, their powers add, and
this can be generalized to the sum of any number of sinusoids. So Parseval’s
relation is another consequence of the fact that sinusoids are orthogonal.

For complex valued signals s(t) there is a relation between the FS of
the signal and that of its complex conjugate s*(t). The FS of the complex
conjugate is c¢* ;. For real signals this implies a symmetry of ci (i.e., c_x =
ct), which means |c_g| = |cx| and R(c_g) = R(ck) but S(c_x) = = (ck).

There are many more symmetries and relations that can be derived for
the FS, e.g., the relationship between the FS of a signal and those of its
derivative and integral. There is also an important rule for the FS of the
product of two signals, which the reader is not yet ready to digest.

EXERCISES

3.7.1 Show that adding to the argument of a sinusoid a phase that varies linearly
with time shifts its frequency by a constant. Relate this to the time shift
property of the FS.
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3.7.2 Plot the sum of several sinusoids with various phases. Demonstrate that a

linear phase shift causes a time shift. Can you tell that all these signals have
the same power spectrum?

3.7.3 How does change of time scale s(at) affect cx? Prove that the effect of time
reversal is to reverse the F'S.

3.7.4 Derive Parseval’s relation for the FS.

3.7.5 Show that if a signal is symmetric(antisymmetric), i.e., if s(t + L) = +s(t),
then its F'S contains only even (odd) harmonics.

3.7.6 The FS of s is cx; what is the F'S of its derivative? Its integral?

3.8 The Fourier Series of Rectangular Wave

Since we have decided to use the complex exponential representation almost
exclusively, we really should try it out. First, we want to introduce a slightly
different notation. When we are dealing with several signals at a time, say
q(t), r(t), and s(t), using cx for the FS coefficients of all of them, would be
confusing to say the least. Since the Fourier coeflicients contain exactly the
same information as the periodic signal, using the name of the signal, as in
Gk, Tk, or Sk, would be justified. There won’t be any confusion since s(t) is
continuous and S, is discrete; however, later we will deal with continuous
spectra where it wouldn’t be clear. So most people prefer to capitalize the
Fourier coefficients, i.e., to use Qx, R, and Sk, in order to emphasize the
distinction between time and frequency domains. Hence from now on we
shall use

Si = -% / s(t) e 1 gt (3.26)

(with the integration over any full period) to go from a signal s(t) to its F'S
{Sk}2 _os and

oo
sit)y= 3 Spel T (3.27)
k=—00
to get back again.

Now to work. We have already derived the FS of a square wave, at least
in the quadrature representation. Here we wish to extend this result to the
slightly more general case of a rectangular wave, i.e., a periodic signal that
does not necessarily spend half of its time at each level. The fraction of time
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Figure 3.7: The rectangular signal with amplitude A, period T, and duty cycle § = %.

a rectangular wave spends in the higher of its levels is called its duty cycle
6 = %, and a rectangular wave with 6 = % duty cycle is a square wave.
We also wish to make the amplitude and period explicit, and to have the
signal more symmetric in the time domain; we accordingly introduce A, T,
and d = 0T, and require the signal to be high from —-% to %. Unlike the
square wave, a non-50% duty cycle rectangular signal will always have a DC
component. There is consequently no reason for keeping the levels symmetric
around zero, and we will use 0 and A rather than +A.

Thus we will study

1 Ifrac(T)I <4

s(t)=A4¢ 0 g< Ifrac(T)I <T-4¢ (3.28)
1 T- < |frac(%)| < T

(where frac(z) is the fractional part of z) as depicted in Figure 3.7.

The period is T and therefore the angular frequencies in the Fourier series
will all be of the form wy = Z%k. We can choose the interval of integration
in equation (3.24) as we desire, as long as it encompasses a complete period.
The most symmetric choice here is from —% to -'g, since the signal then
becomes simply

_ 1 |($)I<$
s(t) = A{ 0 else (3.29)
and as a consequence
T
2

Sp = / e gy
=T/

—lwkt dt

NID. [S]1°W NI"}
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which after change of variable and use of equation (A.8) becomes

in(@kd
Sk = A%az—) = Asinc (c%d) = Asinc (#) = Asinc(mké) (3.30)

where we have recognized our old friend sinc. The FS is dependent only on
the duty cycle, not directly on T'. Of course this does not mean that the
Fourier series is not dependent on T'! The coefficient Sy multiplies the term
containing wy = 2—;‘,’3, and consequently the distribution on the frequency
axis indeed changes. Taking into account this meaning of Sy we see that the
spectral envelope is influenced by the pulse width but not the period.

The main lobe of the sinc function is between —7 and 7, which here
means between 6k = —1 and dk = 1. Hence most of the energy is between
W = g{,ﬁ—k = :t%—;i, or otherwise stated, the frequency spread is Aw = g%.
The minimum spacing between two points in time that represent the same
point on the periodic signal is obviously At = T'. The relationship between
the time and frequency spreads can therefore be expressed as

47

AwAt = = (3.31)

which is called the ‘time-frequency uncertainty product’. The effect of vary-
ing the duty cycle § at constant period T is demonstrated in Figure 3.8. As
0 is decreased the width of the spectrum increases (i.e., the spectral am-
plitudes become more constant) until finally at zero duty cycle (the signal
being a periodic train of impulses) all the amplitudes are equal. If the duty
cycle is increased to one (the signal becoming a constant s(t) = A), only the
DC component remains nonzero.

What happens when the period T is increased, with & constant? We
know that the wider the spacing in the time domain, the narrower the
spacing of the frequency components will be. The constancy of the time-
frequency uncertainty product tells us that the extent of the sinc function
on the frequency axis doesn’t change, just the frequency resolution. This is
demonstrated in Figure 3.9.

These characteristics of the FS of a rectangular wave are important in
the design of pulse radar systems. We will discuss radar in more detail in
Section 5.3, for now it is sufficient to assume the following simplistic model.
The radar transmits a periodic train of short duration pulses, the period of
which is called the Pulse Repetition Interval (PRI); the reciprocal of the
PRI is called the Pulse Repetition Frequency (PRF).

This transmitted radar signal is reflected by a target and received back
at the radar at this same PRI but offset by the round-trip time. Dividing



3.8. THE FOURIER SERIES OF RECTANGULAR WAVE 99

S 111

Figure 3.8: The effect of changing the duty cycle at constant period. In these figures
we see on the left a periodic rectangular signal, and on the right the absolute squares of
its FS amplitudes represented as vertical bars placed at the appropriate frequencies. (A)
represents a duty cycle of 20%, (B) 40%, (C) 60% and (D) 80%. Note that when the duty
cycle vanishes all amplitudes become equal, while when the signal becomes a constant,
only the DC term remains.

the time offset by two and multiplying by the speed of radar waves (the
speed of light c) we obtain the distance from radar to target. The round-trip
time should be kept lower than the PRI; and echo returning after precisely
the PRI is not received since the radar receiver is ‘blanked’ during trans-
mission; if the round-trip time exceeds the PRI we get aliasing, just as
in sampling analog signals. Hence we generally strive to use long PRIs so
that the distance to even remote targets can be unambiguously determined.
More sophisticated radars vary the PRI from pulse to pulse in order to dis-
ambiguate the range while keeping the echo from returning precisely when
the next pulse is to be transmitted.

Due to the Doppler effect, the PRF of the reflection from target moving
at velocity v is shifted from its nominal value.

APRF = PRF % (3.32)

An approaching target is observed with PRF higher than that transmitted,
while a receding target has a lower PRF. The PRF is conveniently found
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Figure 3.9: The effect of changing the period at constant duty cycle. In these figures we
see on the left a penodlc rectangula.r s1gna1 and on the right the absolute squares of its

progress from (A) through (D) the period is halved each time. Note that as the period is

sinc is unchanged.
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voring hlgh PRF Since the requirements of unambiguous range (high PRI)

and precise velocity (high PRE) are mutunally incompatible, simple pulse

The radar s{gnal is roughly a low duty cycle rectangular wave, and so its
FS is approx1mately that of Flgures 3.8 and 3. 9 In order to maximize the
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